Weak Serrin-type finite time blowup and global strong solutions for three-dimensional density-dependent heat conducting magnetohydrodynamic equations with vacuum

Huanyuan Li

Applications of Mathematics (2023)

  • Volume: 68, Issue: 5, page 593-621
  • ISSN: 0862-7940

Abstract

top
This paper is concerned with a Cauchy problem for the three-dimensional (3D) nonhomogeneous incompressible heat conducting magnetohydrodynamic (MHD) equations in the whole space. First of all, we establish a weak Serrin-type blowup criterion for strong solutions. It is shown that for the Cauchy problem of the 3D nonhomogeneous heat conducting MHD equations, the strong solution exists globally if the velocity satisfies the weak Serrin's condition. In particular, this criterion is independent of the absolute temperature and magnetic field. Then as an immediate application, we prove the global existence and uniqueness of strong solution to the 3D nonhomogeneous heat conducting MHD equations under a smallness condition on the initial data. In addition, the initial vacuum is allowed.

How to cite

top

Li, Huanyuan. "Weak Serrin-type finite time blowup and global strong solutions for three-dimensional density-dependent heat conducting magnetohydrodynamic equations with vacuum." Applications of Mathematics 68.5 (2023): 593-621. <http://eudml.org/doc/299339>.

@article{Li2023,
abstract = {This paper is concerned with a Cauchy problem for the three-dimensional (3D) nonhomogeneous incompressible heat conducting magnetohydrodynamic (MHD) equations in the whole space. First of all, we establish a weak Serrin-type blowup criterion for strong solutions. It is shown that for the Cauchy problem of the 3D nonhomogeneous heat conducting MHD equations, the strong solution exists globally if the velocity satisfies the weak Serrin's condition. In particular, this criterion is independent of the absolute temperature and magnetic field. Then as an immediate application, we prove the global existence and uniqueness of strong solution to the 3D nonhomogeneous heat conducting MHD equations under a smallness condition on the initial data. In addition, the initial vacuum is allowed.},
author = {Li, Huanyuan},
journal = {Applications of Mathematics},
keywords = {heat conducting MHD; Cauchy problem; blowup criterion; global strong solution; vacuum},
language = {eng},
number = {5},
pages = {593-621},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak Serrin-type finite time blowup and global strong solutions for three-dimensional density-dependent heat conducting magnetohydrodynamic equations with vacuum},
url = {http://eudml.org/doc/299339},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Li, Huanyuan
TI - Weak Serrin-type finite time blowup and global strong solutions for three-dimensional density-dependent heat conducting magnetohydrodynamic equations with vacuum
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 5
SP - 593
EP - 621
AB - This paper is concerned with a Cauchy problem for the three-dimensional (3D) nonhomogeneous incompressible heat conducting magnetohydrodynamic (MHD) equations in the whole space. First of all, we establish a weak Serrin-type blowup criterion for strong solutions. It is shown that for the Cauchy problem of the 3D nonhomogeneous heat conducting MHD equations, the strong solution exists globally if the velocity satisfies the weak Serrin's condition. In particular, this criterion is independent of the absolute temperature and magnetic field. Then as an immediate application, we prove the global existence and uniqueness of strong solution to the 3D nonhomogeneous heat conducting MHD equations under a smallness condition on the initial data. In addition, the initial vacuum is allowed.
LA - eng
KW - heat conducting MHD; Cauchy problem; blowup criterion; global strong solution; vacuum
UR - http://eudml.org/doc/299339
ER -

References

top
  1. Bie, Q., Wang, Q., Yao, Z., 10.1016/j.nonrwa.2018.10.008, Nonlinear Anal., Real World Appl. 47 (2019), 85-105. (2019) Zbl1411.35013MR3873567DOI10.1016/j.nonrwa.2018.10.008
  2. Chen, F., Guo, B., Zhai, X., 10.3934/krm.2019002, Kinet. Relat. Models 12 (2019), 37-58. (2019) Zbl1410.35110MR3835531DOI10.3934/krm.2019002
  3. Chen, F., Li, Y., Xu, H., 10.3934/dcds.2016.36.2945, Discrete Contin. Dyn. Syst. 36 (2016), 2945-2967. (2016) Zbl1332.35282MR3485426DOI10.3934/dcds.2016.36.2945
  4. Chen, Q., Tan, Z., Wang, Y., 10.1002/mma.1338, Math. Methods Appl. Sci. 34 (2011), 94-107. (2011) Zbl1254.35187MR2778978DOI10.1002/mma.1338
  5. Cho, Y., Kim, H., 10.1016/j.jde.2006.05.001, J. Differ. Equations 228 (2006), 377-411. (2006) Zbl1139.35384MR2289539DOI10.1016/j.jde.2006.05.001
  6. Davidson, P. A., 10.1017/9781316672853, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2017). (2017) Zbl1376.76001MR3699477DOI10.1017/9781316672853
  7. Desjardins, B., Bris, C. Le, Remarks on a nonhomogeneous model of magnetohydrodynamics, Differ. Integral Equ. 11 (1998), 377-394. (1998) Zbl1067.76097MR1745545
  8. Feireisl, E., 10.1093/acprof:oso/9780198528388.001.0001, Oxford Lecture Series in Mathematics and Its Applications 26. Oxford University Press, Oxford (2004). (2004) Zbl1080.76001MR2040667DOI10.1093/acprof:oso/9780198528388.001.0001
  9. Gerbeau, J.-F., Bris, C. Le, Existence of solution for a density-dependent magnetohydrodynamic equation, Adv. Differ. Equ. 2 (1997), 427-452. (1997) Zbl1023.35524MR1441851
  10. Giga, M.-H., Giga, Y., Saal, J., 10.1007/978-0-8176-4651-6, Progress in Nonlinear Differential Equations and their Applications 79. Birkhäuser, Basel (2010). (2010) Zbl1215.35001MR2656972DOI10.1007/978-0-8176-4651-6
  11. Grafakos, L., 10.1007/978-0-387-09432-8, Graduate Texts in Mathematics 249. Springer, New York (2008). (2008) Zbl1220.42001MR2445437DOI10.1007/978-0-387-09432-8
  12. He, C., Li, J., Lü, B., 10.1007/s00205-020-01604-5, Arch. Ration. Mech. Anal. 239 (2021), 1809-1835. (2021) Zbl1462.35243MR4215202DOI10.1007/s00205-020-01604-5
  13. He, C., Xin, Z., 10.1016/j.jde.2004.07.002, J. Differ. Equations 213 (2005), 235-254. (2005) Zbl1072.35154MR2142366DOI10.1016/j.jde.2004.07.002
  14. Huang, X., Wang, Y., 10.1016/j.jde.2012.08.029, J. Differ. Equations 254 (2013), 511-527. (2013) Zbl1253.35121MR2990041DOI10.1016/j.jde.2012.08.029
  15. Kim, H., 10.1137/S0036141004442197, SIAM J. Math. Anal. 37 (2006), 1417-1434. (2006) Zbl1141.35432MR2215270DOI10.1137/S0036141004442197
  16. Kozono, H., Yamazaki, M., 10.1016/S0362-546X(98)00145-X, Nonlinear Anal., Theory Methods Appl. 38 (1999), 959-970. (1999) Zbl0934.35123MR1716426DOI10.1016/S0362-546X(98)00145-X
  17. Lions, P.-L., Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and Its Applications 3. Oxford University Press, Oxford (1996). (1996) Zbl0866.76002MR1422251
  18. Sohr, H., 10.1007/978-3-0348-8255-2, Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). (2001) Zbl0983.35004MR1928881DOI10.1007/978-3-0348-8255-2
  19. Wang, Y., 10.1016/j.physd.2019.132203, Physica D 402 (2020), Article ID 132203, 8 pages. (2020) Zbl1453.76039MR4046368DOI10.1016/j.physd.2019.132203
  20. Wang, W., Yu, H., Zhang, P., 10.1002/mma.4915, Math. Methods Appl. Sci. 41 (2018), 4589-4601. (2018) Zbl1397.35231MR3828345DOI10.1002/mma.4915
  21. Wu, H., 10.1016/j.camwa.2011.03.033, Comput. Math. Appl. 61 (2011), 2742-2753. (2011) Zbl1221.76253MR2795397DOI10.1016/j.camwa.2011.03.033
  22. Zhong, X., 10.1016/j.jde.2017.06.004, J. Differ. Equations 263 (2017), 4978-4996. (2017) Zbl1377.35227MR3680944DOI10.1016/j.jde.2017.06.004
  23. Zhong, X., 10.1016/j.jmaa.2016.09.012, J. Math. Anal. Appl. 446 (2017), 707-729. (2017) Zbl1352.35133MR3554752DOI10.1016/j.jmaa.2016.09.012
  24. Zhong, X., 10.1007/s00526-021-01957-z, Calc. Var. Partial Differ. Equ. 60 (2021), Article ID 64, 24 pages. (2021) Zbl1461.76571MR4239818DOI10.1007/s00526-021-01957-z
  25. Zhong, X., 10.1142/S0219530521500056, Anal. Appl., Singap. 20 (2022), 193-219. (2022) Zbl1490.76251MR4386926DOI10.1142/S0219530521500056
  26. Zhong, X., 10.1007/s12220-021-00754-6, J. Geom. Anal. 32 (2022), Article ID 19, 26 pages. (2022) Zbl1480.76101MR4349463DOI10.1007/s12220-021-00754-6
  27. Zhou, L., 10.14232/ejqtde.2019.1.81, Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Article ID 81, 16 pages. (2019) Zbl1449.35358MR4028913DOI10.14232/ejqtde.2019.1.81
  28. Zhu, M., Ou, M., 10.1007/s11040-019-9306-8, Math. Phys. Anal. Geom. 22 (2019), Article ID 8, 17 pages. (2019) Zbl1416.35224MR3918713DOI10.1007/s11040-019-9306-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.