Minimizing maximum lateness in two-stage projects by tropical optimization
Nikolai Krivulin; Sergeĭ Sergeev
Kybernetika (2022)
- Volume: 58, Issue: 5, page 816-841
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKrivulin, Nikolai, and Sergeev, Sergeĭ. "Minimizing maximum lateness in two-stage projects by tropical optimization." Kybernetika 58.5 (2022): 816-841. <http://eudml.org/doc/299340>.
@article{Krivulin2022,
abstract = {We are considering a two-stage optimal scheduling problem, which involves two similar projects with the same starting times for workers and the same deadlines for tasks. It is required that the starting times for workers and deadlines for tasks should be optimal for the first-stage project and, under this condition, also for the second-stage project. Optimality is measured with respect to the maximal lateness (or maximal delay) of tasks, which has to be minimized. We represent this problem as a problem of tropical pseudoquadratic optimization and show how the existing methods of tropical optimization and tropical linear algebra yield a full and explicit solution for this problem.},
author = {Krivulin, Nikolai, Sergeev, Sergeĭ},
journal = {Kybernetika},
keywords = {tropical optimization; tropical linear algebra; minimax optimization problem; project scheduling; maximum lateness},
language = {eng},
number = {5},
pages = {816-841},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Minimizing maximum lateness in two-stage projects by tropical optimization},
url = {http://eudml.org/doc/299340},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Krivulin, Nikolai
AU - Sergeev, Sergeĭ
TI - Minimizing maximum lateness in two-stage projects by tropical optimization
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 5
SP - 816
EP - 841
AB - We are considering a two-stage optimal scheduling problem, which involves two similar projects with the same starting times for workers and the same deadlines for tasks. It is required that the starting times for workers and deadlines for tasks should be optimal for the first-stage project and, under this condition, also for the second-stage project. Optimality is measured with respect to the maximal lateness (or maximal delay) of tasks, which has to be minimized. We represent this problem as a problem of tropical pseudoquadratic optimization and show how the existing methods of tropical optimization and tropical linear algebra yield a full and explicit solution for this problem.
LA - eng
KW - tropical optimization; tropical linear algebra; minimax optimization problem; project scheduling; maximum lateness
UR - http://eudml.org/doc/299340
ER -
References
top- Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M., , SIAM J. Discrete Math. 29 (2015), 2, 751-795. DOI
- Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J.-P., Synchronization and Linearity., Wiley Series in Probability and Statistics, Wiley, Chichester 1993. Zbl0824.93003
- Bouquard, J.-L., Lenté, C., Billaut, J.-C., , Discrete Appl. Math. 154 (2006), 15, 2064-2079. DOI
- Butkovič, P., Max-linear Systems., Springer Monographs in Mathematics, Springer, London 2010.
- Carré, B. A., , IMA J. Appl. Math. 7 (1971), 3, 273-294. DOI
- Cuninghame-Green, R., , Lecture Notes in Economics and Mathematical Systems 166, Springer, Berlin 1979. Zbl0739.90073DOI
- Cuninghame-Green, R. A., , Oper. Res. Quart. 13 (1962), 1, 95-100. DOI
- Cuninghame-Green, R. A., Minimax algebra and applications. Zbl0739.90073
- Puente, M. J. de la, , Linear Multilinear Algebra 68 (2020), 10, 2110-2142. DOI
- Demeulemeester, E. L., Herroelen, W. S., , International Series in Operations Research and Management Science 49, Springer, New York 2002. DOI
- Ehrgott, M., , Springer, Berlin 2005. DOI
- Gaubert, S., Katz, R. D., , Linear Algebra Appl. 421 (2007), 2, 356-369. DOI
- Gaubert, S., Katz, R. D., Sergeev, S., , J. Symbolic Comput. 47 (2012), 12, 1447-1478. DOI
- Giffler, B., , Naval Res. Logist. Quart. 10 (1963), 1, 237-255. DOI
- Golan, J. S., , Mathematics and Its Applications 556, Kluwer Acad. Publ., Dordrecht 2003. DOI
- Gondran, M., Minoux, M., , Operations Research / Computer Science Interfaces 41, Springer, New York 2008. DOI
- Goto, H., , Eng. Appl. Artif. Intell. 22 (2009), 4, 603-607. DOI
- Heidergott, B., Olsder, G. J., Woude, J. van der, Max Plus at Work., Princeton Series in Applied Mathematics, Princeton Univ. Press, Princeton 2006.
- Katz, R. D., Nitica, V., Sergeev, S., , Linear Algebra Appl. 440 (2014), 131-163. DOI
- Kolokoltsov, V. N., Maslov, V. P., , Mathematics and Its Applications 401, Springer, Dordrecht 1997. Zbl0941.93001DOI
- Krivulin, N., , In: Tropical and Idempotent Mathematics and Applications (G. L. Litvinov and S. N. Sergeev, eds.), Contemporary Mathematics 616, AMS, Providence 2014, pp. 163-177. DOI
- Krivulin, N., , Linear Algebra Appl. 468 (2015), 211-232. DOI
- Krivulin, N., , Optimization 64 (2015), 5, 1107-1129. DOI
- Krivulin, N., , Comput. Manag. Sci. 14 (2017), 1, 91-113. DOI
- Krivulin, N., , Optimization 66 (2017), 2, 205-224. DOI
- Krivulin, N., , Ann. Oper. Res. 256 (2017), 1, 75-92. DOI
- Krivulin, N., , Comput. Manag. Sci. 17 (2020), 3, 437-464. DOI
- Neumann, K., Schwindt, C., Zimmermann, J., , Springer, Berlin 2003. DOI
- Sergeev, S., Liu, Z., Tropical analogues of a Dempe-Franke bilevel optimization problem., In: Optimization of Complex Systems: Theory, Models, Algorithms and Applications (H. A. Le Thi, H. M. Le, and T. Pham Dinh, eds.), Springer, Cham 2020, pp. 691-701.
- T'kindt, V., Billaut, J.-C., , Springer, Berlin 2006. DOI
- Yoeli, M., , Amer. Math. Monthly 68 (1961), 6, 552-557. Zbl0115.02103DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.