Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method
Yu Ping Wang; Shahrbanoo Akbarpoor Kiasary; Emrah Yılmaz
Applications of Mathematics (2024)
- Volume: 69, Issue: 3, page 339-354
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWang, Yu Ping, Akbarpoor Kiasary, Shahrbanoo, and Yılmaz, Emrah. "Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method." Applications of Mathematics 69.3 (2024): 339-354. <http://eudml.org/doc/299344>.
@article{Wang2024,
abstract = {We consider the inverse nodal problem for Sturm-Liouville (S-L) equation with frozen argument. Asymptotic behaviours of eigenfunctions, nodal parameters are represented in two cases and numerical algorithms are produced to solve the given problems. Subsequently, solution of inverse nodal problem is calculated by the second Chebyshev wavelet method (SCW), accuracy and effectiveness of the method are shown in some numerical examples.},
author = {Wang, Yu Ping, Akbarpoor Kiasary, Shahrbanoo, Yılmaz, Emrah},
journal = {Applications of Mathematics},
keywords = {Sturm-Liouville equation; inverse nodal problem; Frozen argument; nodal parameters; SCW method},
language = {eng},
number = {3},
pages = {339-354},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method},
url = {http://eudml.org/doc/299344},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Wang, Yu Ping
AU - Akbarpoor Kiasary, Shahrbanoo
AU - Yılmaz, Emrah
TI - Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 339
EP - 354
AB - We consider the inverse nodal problem for Sturm-Liouville (S-L) equation with frozen argument. Asymptotic behaviours of eigenfunctions, nodal parameters are represented in two cases and numerical algorithms are produced to solve the given problems. Subsequently, solution of inverse nodal problem is calculated by the second Chebyshev wavelet method (SCW), accuracy and effectiveness of the method are shown in some numerical examples.
LA - eng
KW - Sturm-Liouville equation; inverse nodal problem; Frozen argument; nodal parameters; SCW method
UR - http://eudml.org/doc/299344
ER -
References
top- Akbarpoor, S., Koyunbakan, H., Dabbaghian, A., 10.1080/17415977.2019.1597871, Inverse Probl. Sci. Eng. 27 (2019), 1790-1801. (2019) Zbl1461.34031MR4009877DOI10.1080/17415977.2019.1597871
- Albeverio, S., Hryniv, R. O., Nizhnik, L. P., 10.1088/0266-5611/23/2/005, Inverse Probl. 23 (2007), 523-535. (2007) Zbl1121.34014MR2309662DOI10.1088/0266-5611/23/2/005
- Bondarenko, N. P., Buterin, S. A., Vasiliev, S. V., 10.1016/j.jmaa.2018.11.062, J. Math. Anal. Appl. 472 (2019), 1028-1041. (2019) Zbl1416.34015MR3906409DOI10.1016/j.jmaa.2018.11.062
- Bondarenko, N. P., Yurko, V. A., 10.1016/j.aml.2018.03.025, Appl. Math. Lett. 83 (2018), 140-144. (2018) Zbl1489.34105MR3795682DOI10.1016/j.aml.2018.03.025
- Bondarenko, N. P., Yurko, V. A., 10.1002/mma.5265, Math. Methods Appl. Sci. 41 (2018), 8350-8354. (2018) Zbl1469.34034MR3891294DOI10.1002/mma.5265
- Borg, G., 10.1007/BF02421600, Acta Math. 78 (1946), 1-96 German. (1946) Zbl0063.00523MR0015185DOI10.1007/BF02421600
- Browne, P. J., Sleeman, B. D., 10.1088/0266-5611/12/4/002, Inverse Probl. 12 (1996), 377-381. (1996) Zbl0860.34007MR1402097DOI10.1088/0266-5611/12/4/002
- Buterin, S. A., Kuznetsova, M., 10.1007/s40314-019-0972-8, Comput. Appl. Math. 39 (2020), Article ID 5, 15 pages. (2020) Zbl1449.34265MR4036537DOI10.1007/s40314-019-0972-8
- Buterin, S. A., Pikula, M., Yurko, V. A., 10.5556/j.tkjm.48.2017.2264, Tamkang J. Math. 48 (2017), 61-71. (2017) Zbl1410.34230MR3623427DOI10.5556/j.tkjm.48.2017.2264
- Buterin, S. A., Shieh, C.-T., 10.1007/s00025-011-0137-6, Result. Math. 62 (2012), 167-179. (2012) Zbl1256.34010MR2964764DOI10.1007/s00025-011-0137-6
- Buterin, S. A., Vasiliev, S. V., 10.1515/jiip-2018-0047, J. Inverse Ill-Posed Probl. 27 (2019), 429-438. (2019) Zbl1422.34214MR3962691DOI10.1515/jiip-2018-0047
- Buterin, S. A., Yurko, V. A., 10.1007/s13324-017-0176-6, Anal. Math. Phys. 9 (2019), 17-27. (2019) Zbl1423.34087MR3933524DOI10.1007/s13324-017-0176-6
- Chen, X., Cheng, Y. H., Law, C. K., 10.1090/S0002-9947-2011-05258-X, Trans. Am. Math. Soc. 363 (2011), 4831-4851. (2011) Zbl1232.34021MR2806693DOI10.1090/S0002-9947-2011-05258-X
- Cheng, Y.-H., Law, C. K., Tsay, J., 10.1006/jmaa.2000.6878, J. Math. Anal. Appl. 248 (2000), 145-155. (2000) Zbl0960.34018MR1772587DOI10.1006/jmaa.2000.6878
- Gulsen, T., Yilmaz, E., Akbarpoor, S., 10.2298/TSCI170612278G, Thermal Sci. 22 (2018), S123--S136. (2018) DOI10.2298/TSCI170612278G
- Guo, Y., Wei, G., 10.1016/j.jde.2013.06.006, J. Differ. Equations 255 (2013), 2002-2017. (2013) Zbl1288.34013MR3072679DOI10.1016/j.jde.2013.06.006
- Hald, O. H., McLaughlin, J. R., 10.1088/0266-5611/5/3/008, Inverse Probl. 5 (1989), 307-347. (1989) Zbl0667.34020MR0999065DOI10.1088/0266-5611/5/3/008
- Hu, Y.-T., Bondarenko, N. P., Yang, C.-F., 10.1016/j.aml.2019.106096, Appl. Math. Lett. 102 (2020), Article ID 106096, 7 pages. (2020) Zbl1444.34076MR4024736DOI10.1016/j.aml.2019.106096
- Krall, A. M., 10.1216/RMJ-1975-5-4-493, Rocky Mt. J. Math. 5 (1975), 493-542. (1975) Zbl0322.34009MR0409946DOI10.1216/RMJ-1975-5-4-493
- Kuryshova, Y. V., 10.1134/S0001434607050240, Math. Notes 81 (2007), 767-777. (2007) Zbl1142.45006MR2349102DOI10.1134/S0001434607050240
- Law, C. K., Shen, C.-L., Yang, C.-F., 10.1088/0266-5611/15/1/024, Inverse Probl. 15 (1999), 253-263. (1999) Zbl0921.34028MR1675348DOI10.1088/0266-5611/15/1/024
- Law, C. K., Yang, C.-F., 10.1088/0266-5611/14/2/006, Inverse Probl. 14 (1998), 299-312. (1998) Zbl0901.34023MR1619374DOI10.1088/0266-5611/14/2/006
- McLaughlin, J. R., 10.1016/0022-0396(88)90111-8, J. Differ. Equations 73 (1988), 342-362. (1988) Zbl0652.34029MR0943946DOI10.1016/0022-0396(88)90111-8
- Neamaty, A., Akbarpoor, S., 10.1080/17415977.2016.1209751, Inverse Probl. Sci. Eng. 25 (2017), 978-994. (2017) Zbl1371.65066MR3635003DOI10.1080/17415977.2016.1209751
- Nizhnik, L., 10.1088/0266-5611/26/12/125006, Inverse Probl. 26 (2010), Article ID 125006, 9 pages. (2010) Zbl1217.34040MR2737740DOI10.1088/0266-5611/26/12/125006
- Pikula, M., Determination of a differential operator of Sturm-Liouville type with retarded argument by two spectra, Mat. Vesn. 43 (1991), 159-171 Russian. (1991) Zbl0776.34009MR1202169
- Pöschel, J., Trubowitz, E., 10.1016/s0079-8169(08)x6138-0, Pure and Applied Mathematics 130. Academic Press, Boston (1987). (1987) Zbl0623.34001MR0894477DOI10.1016/s0079-8169(08)x6138-0
- Rundell, W., Sacks, P. E., 10.1088/0266-5611/8/3/007, Inverse Probl. 8 (1992), 457-482. (1992) Zbl0762.34003MR1166492DOI10.1088/0266-5611/8/3/007
- Shieh, C.-T., Yurko, V. A., 10.1016/j.jmaa.2008.05.097, J. Math. Anal. Appl. 347 (2008), 266-272. (2008) Zbl1209.34014MR2433842DOI10.1016/j.jmaa.2008.05.097
- Vladičić, V., Pikula, M., 10.5644/SJM.12.1.06, Sarajevo J. Math. 12 (2016), 83-88. (2016) Zbl1424.34264MR3511149DOI10.5644/SJM.12.1.06
- Wang, Y. P., Lien, K. Y., Shieh, C.-T., 10.1080/00036811.2016.1183770, Appl. Anal. 96 (2017), 1229-1239. (2017) Zbl1410.34064MR3627617DOI10.1080/00036811.2016.1183770
- Wang, Y. P., Shieh, C.-T., Miao, H. Y., 10.1080/17415977.2018.1489803, Inverse Probl. Sci. Eng. 27 (2019), 608-617. (2019) Zbl1461.34036MR3918035DOI10.1080/17415977.2018.1489803
- Wang, Y. P., Yurko, V. A., 10.1016/j.jde.2015.11.004, J. Differ. Equations 260 (2016), 4086-4109. (2016) Zbl1342.34028MR3437580DOI10.1016/j.jde.2015.11.004
- Wang, Y. P., Zhang, M., Zhao, W., Wei, X., 10.1016/j.aml.2020.106590, Appl. Math. Lett. 111 (2021), Article ID 106590, 6 pages. (2021) Zbl1524.34183MR4119344DOI10.1016/j.aml.2020.106590
- Wang, Y., Zhu, L., 10.1016/j.amc.2015.11.057, Appl. Math. Comput. 275 (2016), 72-80. (2016) Zbl1410.65288MR3437690DOI10.1016/j.amc.2015.11.057
- Wei, X., Miao, H., Ge, C., Zhao, C., 10.1080/17415977.2020.1779711, Inverse Probl. Sci. Eng. 29 (2021), 305-317. (2021) Zbl1470.65134MR4226240DOI10.1080/17415977.2020.1779711
- Yang, C.-F., Yang, X.-P., 10.1080/17415977.2011.565874, Inverse Probl. Sci. Eng. 19 (2011), 951-961. (2011) Zbl1248.34013MR2836942DOI10.1080/17415977.2011.565874
- Yang, X.-F., 10.1006/jdeq.2000.3911, J. Differ. Equations 169 (2001), 633-653. (2001) Zbl0977.34021MR1808480DOI10.1006/jdeq.2000.3911
- lmaz, E. Yı, Koyunbakan, H., 10.1080/17415977.2010.492514, Inverse Probl. Sci. Eng. 18 (2010), 935-944. (2010) Zbl1205.65215MR2743231DOI10.1080/17415977.2010.492514
- Yurko, V. A., An inverse spectral problem for integro-differential operators, Far East J. Math. Sci. (FJMS) 92 (2014), 247-261. (2014) Zbl1328.47051MR3535366
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.