Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method

Yu Ping Wang; Shahrbanoo Akbarpoor Kiasary; Emrah Yılmaz

Applications of Mathematics (2024)

  • Volume: 69, Issue: 3, page 339-354
  • ISSN: 0862-7940

Abstract

top
We consider the inverse nodal problem for Sturm-Liouville (S-L) equation with frozen argument. Asymptotic behaviours of eigenfunctions, nodal parameters are represented in two cases and numerical algorithms are produced to solve the given problems. Subsequently, solution of inverse nodal problem is calculated by the second Chebyshev wavelet method (SCW), accuracy and effectiveness of the method are shown in some numerical examples.

How to cite

top

Wang, Yu Ping, Akbarpoor Kiasary, Shahrbanoo, and Yılmaz, Emrah. "Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method." Applications of Mathematics 69.3 (2024): 339-354. <http://eudml.org/doc/299344>.

@article{Wang2024,
abstract = {We consider the inverse nodal problem for Sturm-Liouville (S-L) equation with frozen argument. Asymptotic behaviours of eigenfunctions, nodal parameters are represented in two cases and numerical algorithms are produced to solve the given problems. Subsequently, solution of inverse nodal problem is calculated by the second Chebyshev wavelet method (SCW), accuracy and effectiveness of the method are shown in some numerical examples.},
author = {Wang, Yu Ping, Akbarpoor Kiasary, Shahrbanoo, Yılmaz, Emrah},
journal = {Applications of Mathematics},
keywords = {Sturm-Liouville equation; inverse nodal problem; Frozen argument; nodal parameters; SCW method},
language = {eng},
number = {3},
pages = {339-354},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method},
url = {http://eudml.org/doc/299344},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Wang, Yu Ping
AU - Akbarpoor Kiasary, Shahrbanoo
AU - Yılmaz, Emrah
TI - Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 339
EP - 354
AB - We consider the inverse nodal problem for Sturm-Liouville (S-L) equation with frozen argument. Asymptotic behaviours of eigenfunctions, nodal parameters are represented in two cases and numerical algorithms are produced to solve the given problems. Subsequently, solution of inverse nodal problem is calculated by the second Chebyshev wavelet method (SCW), accuracy and effectiveness of the method are shown in some numerical examples.
LA - eng
KW - Sturm-Liouville equation; inverse nodal problem; Frozen argument; nodal parameters; SCW method
UR - http://eudml.org/doc/299344
ER -

References

top
  1. Akbarpoor, S., Koyunbakan, H., Dabbaghian, A., 10.1080/17415977.2019.1597871, Inverse Probl. Sci. Eng. 27 (2019), 1790-1801. (2019) Zbl1461.34031MR4009877DOI10.1080/17415977.2019.1597871
  2. Albeverio, S., Hryniv, R. O., Nizhnik, L. P., 10.1088/0266-5611/23/2/005, Inverse Probl. 23 (2007), 523-535. (2007) Zbl1121.34014MR2309662DOI10.1088/0266-5611/23/2/005
  3. Bondarenko, N. P., Buterin, S. A., Vasiliev, S. V., 10.1016/j.jmaa.2018.11.062, J. Math. Anal. Appl. 472 (2019), 1028-1041. (2019) Zbl1416.34015MR3906409DOI10.1016/j.jmaa.2018.11.062
  4. Bondarenko, N. P., Yurko, V. A., 10.1016/j.aml.2018.03.025, Appl. Math. Lett. 83 (2018), 140-144. (2018) Zbl1489.34105MR3795682DOI10.1016/j.aml.2018.03.025
  5. Bondarenko, N. P., Yurko, V. A., 10.1002/mma.5265, Math. Methods Appl. Sci. 41 (2018), 8350-8354. (2018) Zbl1469.34034MR3891294DOI10.1002/mma.5265
  6. Borg, G., 10.1007/BF02421600, Acta Math. 78 (1946), 1-96 German. (1946) Zbl0063.00523MR0015185DOI10.1007/BF02421600
  7. Browne, P. J., Sleeman, B. D., 10.1088/0266-5611/12/4/002, Inverse Probl. 12 (1996), 377-381. (1996) Zbl0860.34007MR1402097DOI10.1088/0266-5611/12/4/002
  8. Buterin, S. A., Kuznetsova, M., 10.1007/s40314-019-0972-8, Comput. Appl. Math. 39 (2020), Article ID 5, 15 pages. (2020) Zbl1449.34265MR4036537DOI10.1007/s40314-019-0972-8
  9. Buterin, S. A., Pikula, M., Yurko, V. A., 10.5556/j.tkjm.48.2017.2264, Tamkang J. Math. 48 (2017), 61-71. (2017) Zbl1410.34230MR3623427DOI10.5556/j.tkjm.48.2017.2264
  10. Buterin, S. A., Shieh, C.-T., 10.1007/s00025-011-0137-6, Result. Math. 62 (2012), 167-179. (2012) Zbl1256.34010MR2964764DOI10.1007/s00025-011-0137-6
  11. Buterin, S. A., Vasiliev, S. V., 10.1515/jiip-2018-0047, J. Inverse Ill-Posed Probl. 27 (2019), 429-438. (2019) Zbl1422.34214MR3962691DOI10.1515/jiip-2018-0047
  12. Buterin, S. A., Yurko, V. A., 10.1007/s13324-017-0176-6, Anal. Math. Phys. 9 (2019), 17-27. (2019) Zbl1423.34087MR3933524DOI10.1007/s13324-017-0176-6
  13. Chen, X., Cheng, Y. H., Law, C. K., 10.1090/S0002-9947-2011-05258-X, Trans. Am. Math. Soc. 363 (2011), 4831-4851. (2011) Zbl1232.34021MR2806693DOI10.1090/S0002-9947-2011-05258-X
  14. Cheng, Y.-H., Law, C. K., Tsay, J., 10.1006/jmaa.2000.6878, J. Math. Anal. Appl. 248 (2000), 145-155. (2000) Zbl0960.34018MR1772587DOI10.1006/jmaa.2000.6878
  15. Gulsen, T., Yilmaz, E., Akbarpoor, S., 10.2298/TSCI170612278G, Thermal Sci. 22 (2018), S123--S136. (2018) DOI10.2298/TSCI170612278G
  16. Guo, Y., Wei, G., 10.1016/j.jde.2013.06.006, J. Differ. Equations 255 (2013), 2002-2017. (2013) Zbl1288.34013MR3072679DOI10.1016/j.jde.2013.06.006
  17. Hald, O. H., McLaughlin, J. R., 10.1088/0266-5611/5/3/008, Inverse Probl. 5 (1989), 307-347. (1989) Zbl0667.34020MR0999065DOI10.1088/0266-5611/5/3/008
  18. Hu, Y.-T., Bondarenko, N. P., Yang, C.-F., 10.1016/j.aml.2019.106096, Appl. Math. Lett. 102 (2020), Article ID 106096, 7 pages. (2020) Zbl1444.34076MR4024736DOI10.1016/j.aml.2019.106096
  19. Krall, A. M., 10.1216/RMJ-1975-5-4-493, Rocky Mt. J. Math. 5 (1975), 493-542. (1975) Zbl0322.34009MR0409946DOI10.1216/RMJ-1975-5-4-493
  20. Kuryshova, Y. V., 10.1134/S0001434607050240, Math. Notes 81 (2007), 767-777. (2007) Zbl1142.45006MR2349102DOI10.1134/S0001434607050240
  21. Law, C. K., Shen, C.-L., Yang, C.-F., 10.1088/0266-5611/15/1/024, Inverse Probl. 15 (1999), 253-263. (1999) Zbl0921.34028MR1675348DOI10.1088/0266-5611/15/1/024
  22. Law, C. K., Yang, C.-F., 10.1088/0266-5611/14/2/006, Inverse Probl. 14 (1998), 299-312. (1998) Zbl0901.34023MR1619374DOI10.1088/0266-5611/14/2/006
  23. McLaughlin, J. R., 10.1016/0022-0396(88)90111-8, J. Differ. Equations 73 (1988), 342-362. (1988) Zbl0652.34029MR0943946DOI10.1016/0022-0396(88)90111-8
  24. Neamaty, A., Akbarpoor, S., 10.1080/17415977.2016.1209751, Inverse Probl. Sci. Eng. 25 (2017), 978-994. (2017) Zbl1371.65066MR3635003DOI10.1080/17415977.2016.1209751
  25. Nizhnik, L., 10.1088/0266-5611/26/12/125006, Inverse Probl. 26 (2010), Article ID 125006, 9 pages. (2010) Zbl1217.34040MR2737740DOI10.1088/0266-5611/26/12/125006
  26. Pikula, M., Determination of a differential operator of Sturm-Liouville type with retarded argument by two spectra, Mat. Vesn. 43 (1991), 159-171 Russian. (1991) Zbl0776.34009MR1202169
  27. Pöschel, J., Trubowitz, E., 10.1016/s0079-8169(08)x6138-0, Pure and Applied Mathematics 130. Academic Press, Boston (1987). (1987) Zbl0623.34001MR0894477DOI10.1016/s0079-8169(08)x6138-0
  28. Rundell, W., Sacks, P. E., 10.1088/0266-5611/8/3/007, Inverse Probl. 8 (1992), 457-482. (1992) Zbl0762.34003MR1166492DOI10.1088/0266-5611/8/3/007
  29. Shieh, C.-T., Yurko, V. A., 10.1016/j.jmaa.2008.05.097, J. Math. Anal. Appl. 347 (2008), 266-272. (2008) Zbl1209.34014MR2433842DOI10.1016/j.jmaa.2008.05.097
  30. Vladičić, V., Pikula, M., 10.5644/SJM.12.1.06, Sarajevo J. Math. 12 (2016), 83-88. (2016) Zbl1424.34264MR3511149DOI10.5644/SJM.12.1.06
  31. Wang, Y. P., Lien, K. Y., Shieh, C.-T., 10.1080/00036811.2016.1183770, Appl. Anal. 96 (2017), 1229-1239. (2017) Zbl1410.34064MR3627617DOI10.1080/00036811.2016.1183770
  32. Wang, Y. P., Shieh, C.-T., Miao, H. Y., 10.1080/17415977.2018.1489803, Inverse Probl. Sci. Eng. 27 (2019), 608-617. (2019) Zbl1461.34036MR3918035DOI10.1080/17415977.2018.1489803
  33. Wang, Y. P., Yurko, V. A., 10.1016/j.jde.2015.11.004, J. Differ. Equations 260 (2016), 4086-4109. (2016) Zbl1342.34028MR3437580DOI10.1016/j.jde.2015.11.004
  34. Wang, Y. P., Zhang, M., Zhao, W., Wei, X., 10.1016/j.aml.2020.106590, Appl. Math. Lett. 111 (2021), Article ID 106590, 6 pages. (2021) Zbl1524.34183MR4119344DOI10.1016/j.aml.2020.106590
  35. Wang, Y., Zhu, L., 10.1016/j.amc.2015.11.057, Appl. Math. Comput. 275 (2016), 72-80. (2016) Zbl1410.65288MR3437690DOI10.1016/j.amc.2015.11.057
  36. Wei, X., Miao, H., Ge, C., Zhao, C., 10.1080/17415977.2020.1779711, Inverse Probl. Sci. Eng. 29 (2021), 305-317. (2021) Zbl1470.65134MR4226240DOI10.1080/17415977.2020.1779711
  37. Yang, C.-F., Yang, X.-P., 10.1080/17415977.2011.565874, Inverse Probl. Sci. Eng. 19 (2011), 951-961. (2011) Zbl1248.34013MR2836942DOI10.1080/17415977.2011.565874
  38. Yang, X.-F., 10.1006/jdeq.2000.3911, J. Differ. Equations 169 (2001), 633-653. (2001) Zbl0977.34021MR1808480DOI10.1006/jdeq.2000.3911
  39. lmaz, E. Yı, Koyunbakan, H., 10.1080/17415977.2010.492514, Inverse Probl. Sci. Eng. 18 (2010), 935-944. (2010) Zbl1205.65215MR2743231DOI10.1080/17415977.2010.492514
  40. Yurko, V. A., An inverse spectral problem for integro-differential operators, Far East J. Math. Sci. (FJMS) 92 (2014), 247-261. (2014) Zbl1328.47051MR3535366

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.