Algebraic solution to box-constrained bi-criteria problem of rating alternatives through pairwise comparisons
Kybernetika (2022)
- Volume: 58, Issue: 5, page 665-690
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKrivulin, Nikolai. "Algebraic solution to box-constrained bi-criteria problem of rating alternatives through pairwise comparisons." Kybernetika 58.5 (2022): 665-690. <http://eudml.org/doc/299346>.
@article{Krivulin2022,
abstract = {We consider a decision-making problem to evaluate absolute ratings of alternatives that are compared in pairs according to two criteria, subject to box constraints on the ratings. The problem is formulated as the log-Chebyshev approximation of two pairwise comparison matrices by a common consistent matrix (a symmetrically reciprocal matrix of unit rank), to minimize the approximation errors for both matrices simultaneously. We rearrange the approximation problem as a constrained bi-objective optimization problem of finding a vector that determines the approximating consistent matrix, and then represent the problem in terms of tropical algebra. We apply methods and results of tropical optimization to derive an analytical solution of the constrained problem. The solution consists in introducing two new variables that describe the values of the objective functions and allow reducing the problem to the solution of a system of parameterized inequalities constructed for the unknown vector, where the new variables play the role of parameters. We exploit the existence condition for solutions of the system to derive those values of the parameters that belong to the Pareto front inherent to the problem. Then, we solve the system for the unknown vector and take all solutions that correspond to the Pareto front, as a complete solution of the bi-objective problem. We apply the result obtained to the bi-criteria decision problem under consideration and present illustrative examples.},
author = {Krivulin, Nikolai},
journal = {Kybernetika},
keywords = {idempotent semifield; tropical optimization; constrained bi-criteria decision problem; Pareto-optimal solution; box constraints; pairwise comparisons},
language = {eng},
number = {5},
pages = {665-690},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Algebraic solution to box-constrained bi-criteria problem of rating alternatives through pairwise comparisons},
url = {http://eudml.org/doc/299346},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Krivulin, Nikolai
TI - Algebraic solution to box-constrained bi-criteria problem of rating alternatives through pairwise comparisons
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 5
SP - 665
EP - 690
AB - We consider a decision-making problem to evaluate absolute ratings of alternatives that are compared in pairs according to two criteria, subject to box constraints on the ratings. The problem is formulated as the log-Chebyshev approximation of two pairwise comparison matrices by a common consistent matrix (a symmetrically reciprocal matrix of unit rank), to minimize the approximation errors for both matrices simultaneously. We rearrange the approximation problem as a constrained bi-objective optimization problem of finding a vector that determines the approximating consistent matrix, and then represent the problem in terms of tropical algebra. We apply methods and results of tropical optimization to derive an analytical solution of the constrained problem. The solution consists in introducing two new variables that describe the values of the objective functions and allow reducing the problem to the solution of a system of parameterized inequalities constructed for the unknown vector, where the new variables play the role of parameters. We exploit the existence condition for solutions of the system to derive those values of the parameters that belong to the Pareto front inherent to the problem. Then, we solve the system for the unknown vector and take all solutions that correspond to the Pareto front, as a complete solution of the bi-objective problem. We apply the result obtained to the bi-criteria decision problem under consideration and present illustrative examples.
LA - eng
KW - idempotent semifield; tropical optimization; constrained bi-criteria decision problem; Pareto-optimal solution; box constraints; pairwise comparisons
UR - http://eudml.org/doc/299346
ER -
References
top- Barzilai, J., , J. Oper. Res. Soc. 48 (1997), 12, 1226-1232. DOI
- Belton, V., Gear, T., , Omega 11 (1983), 3, 228-230. DOI
- Benson, H. P., , In: Encyclopedia of Optimization. Second edition. (C. A. Floudas and P. M. Pardalos, eds), Springer, Boston 2009, pp. 2478-2481. DOI
- Choo, E. U., Wedley, W. C., , Comput. Oper. Res. 31 (2004), 6, 893-908. DOI
- Crawford, G., Williams, C., , J. Math. Psych. 29 (1985), 4, 387-405. DOI
- Ehrgott, M., , Springer, Berlin 2005. DOI
- Elsner, L., Driessche, P. van den, , Linear Algebra Appl. 385 (2004), 1, 47-62. DOI
- Elsner, L., Driessche, P. van den, , Linear Algebra Appl. 432 (2010), 4, 927-935. DOI
- Gavalec, M., Ramík, J., Zimmermann, K., , Lecture Notes in Economics and Mathematical Systems 677, Springer, Cham 2015. DOI
- Golan, J. S., , 556, Springer, Dordrecht 2003. DOI
- Gondran, M., Minoux, M., , Operations Research/ Computer Science Interfaces 41, Springer, Boston 2008. DOI
- Goto, H., Wang, S., , Oper. Res. Int. J. 22 (2022), 1, 401-422. DOI
- Gursoy, B. B., Mason, O., Sergeev, S., , Linear Algebra Appl. 438 (2013), 7, 2911-2928. DOI
- Heidergott, B., Olsder, G. J., Woude, J. van der, Max Plus at Work., Princeton Series in Applied Mathematics. Princeton University Press, Princeton 2006.
- Kolokoltsov, V. N., Maslov, V. P., , Mathematics and Its Applications 401, Springer, Dordrecht 1997. Zbl0941.93001DOI
- Krivulin, N., , In: Tropical and Idempotent Mathematics and Applications (G. L. Litvinov and S. N. Sergeev, eds.), Contemporary Mathematics 616, AMS, Providence 2014, pp. 163-177. DOI
- Krivulin, N., , Linear Algebra Appl. 468 (2015), 211-232. DOI
- Krivulin, N., , Optimization 64 (2015), 5, 1107-1129. DOI
- Krivulin, N., , In: 12th Intern. Conf. on Fuzzy Systems and Knowledge Discovery (FSKD) (Z. Tang, J. Du, S. Yin, L. He, and R. Li, eds.), IEEE, 2015, pp. 162-167. DOI
- Krivulin, N., , In: Proc. 7th SIAM Workshop on Combinatorial Scientific Computing (A. H. Gebremedhin, E. G. Boman, and B. Ucar, eds.), SIAM, Philadelphia 2016, pp. 62-72. DOI
- Krivulin, N., , Comput. Manag. Sci. 14 (2017), 1, 91-113. DOI
- Krivulin, N., , Comput. Manag. Sci. 17 (2020), 1, 79-104. DOI
- Krivulin, N., , Mathematics 9 (2021), 4, 303. DOI
- Krivulin, N., Sergeev, S., , Fuzzy Sets Systems 377 (2019), 31-51. DOI
- Luc, D. T., , In: Pareto Optimality, Game Theory and Equilibria (A. Chinchuluun, P. M. Pardalos, A. Migdalas, and L. Pitsoulis, eds.), Springer, New York 2008, pp. 481-515. DOI
- Maclagan, D., Sturmfels, B., , Graduate Studies in Mathematics 161, AMS, Providence 2015. DOI
- Pappalardo, M., , In: Pareto Optimality, Game Theory and Equilibria (A. Chinchuluun, P. M. Pardalos, A. Migdalas, and L. Pitsoulis, eds.), Springer, New York 2008, pp. 517-528. DOI
- Portugal, R. D., Svaiter, B. F., , Minds Mach. 21 (2011), 1, 73-81. DOI
- Ramesh, R., Zionts, S., , In: Encyclopedia of Operations Research and Management Science (S. I. Gass and M. C. Fu, eds.), Springer, Boston 2013, pp. 1007-1013. DOI
- Ramík, J., , Lecture Notes in Economics and Mathematical Systems 690, Springer, Cham 2020. DOI
- Saaty, T. L., , J. Math. Psych. 15 (1977), 3, 234-281. DOI
- Saaty, T. L., The Analytic Hierarchy Process. Second edition., RWS Publications, Pittsburgh 1990.
- Saaty, T. L., , Notices Amer. Math. Soc. 60 (2013), 2, 192-208. DOI
- Saaty, T. L., Vargas, L. G., , Math. Modelling 5 (1984), 5, 309-324. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.