Lower bound for class numbers of certain real quadratic fields
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 1-14
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMishra, Mohit. "Lower bound for class numbers of certain real quadratic fields." Czechoslovak Mathematical Journal 73.1 (2023): 1-14. <http://eudml.org/doc/299348>.
@article{Mishra2023,
abstract = {Let $d$ be a square-free positive integer and $h(d)$ be the class number of the real quadratic field $\mathbb \{Q\}\{(\sqrt\{d\})\}.$ We give an explicit lower bound for $h(n^2+r)$, where $r=1,4$. Ankeny and Chowla proved that if $g>1$ is a natural number and $d=n^\{2g\}+1$ is a square-free integer, then $g \mid h(d)$ whenever $n>4$. Applying our lower bounds, we show that there does not exist any natural number $n>1$ such that $h(n^\{2g\}+1)=g$. We also obtain a similar result for the family $\mathbb \{Q\}(\sqrt\{n^\{2g\}+4\})$. As another application, we deduce some criteria for a class group of prime power order to be cyclic.},
author = {Mishra, Mohit},
journal = {Czechoslovak Mathematical Journal},
keywords = {real quadratic field; class group; class number; Dedekind zeta values},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lower bound for class numbers of certain real quadratic fields},
url = {http://eudml.org/doc/299348},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Mishra, Mohit
TI - Lower bound for class numbers of certain real quadratic fields
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 1
EP - 14
AB - Let $d$ be a square-free positive integer and $h(d)$ be the class number of the real quadratic field $\mathbb {Q}{(\sqrt{d})}.$ We give an explicit lower bound for $h(n^2+r)$, where $r=1,4$. Ankeny and Chowla proved that if $g>1$ is a natural number and $d=n^{2g}+1$ is a square-free integer, then $g \mid h(d)$ whenever $n>4$. Applying our lower bounds, we show that there does not exist any natural number $n>1$ such that $h(n^{2g}+1)=g$. We also obtain a similar result for the family $\mathbb {Q}(\sqrt{n^{2g}+4})$. As another application, we deduce some criteria for a class group of prime power order to be cyclic.
LA - eng
KW - real quadratic field; class group; class number; Dedekind zeta values
UR - http://eudml.org/doc/299348
ER -
References
top- Ankeny, N. C., Chowla, S., 10.2140/pjm.1955.5.321, Pac. J. Math. 5 (1955), 321-324. (1955) Zbl0065.02402MR0085301DOI10.2140/pjm.1955.5.321
- Apostol, T. M., 10.1215/S0012-7094-50-01716-9, Duke Math. J. 17 (1950), 147-157. (1950) Zbl0039.03801MR0034781DOI10.1215/S0012-7094-50-01716-9
- Biró, A., 10.4064/aa107-2-5, Acta Arith. 107 (2003), 179-194. (2003) Zbl1154.11339MR1970822DOI10.4064/aa107-2-5
- Biró, A., 10.4064/aa106-1-6, Acta Arith. 106 (2003), 85-104. (2003) Zbl1154.11338MR1956977DOI10.4064/aa106-1-6
- Biró, A., Lapkova, K., 10.4064/aa118-2-2, Acta Arith. 172 (2016), 117-131. (2016) Zbl1358.11119MR3455622DOI10.4064/aa118-2-2
- Byeon, D., Kim, H. K., 10.1006/jnth.1996.0052, J. Number Theory 57 (1996), 328-339. (1996) Zbl0846.11060MR1382755DOI10.1006/jnth.1996.0052
- Byeon, D., Kim, H. K., 10.1006/jnth.1997.2059, J. Number Theory 62 (1997), 257-272. (1997) Zbl0871.11076MR1432773DOI10.1006/jnth.1997.2059
- Chakraborty, K., Hoque, A., Mishra, M., 10.2206/kyushujm.74.201, Kyushu J. Math. 74 (2020), 201-210. (2020) Zbl1452.11132MR4129806DOI10.2206/kyushujm.74.201
- Chakraborty, K., Hoque, A., Mishra, M., 10.1007/s40316-020-00139-1, Ann. Math. Qué. 45 (2021), 203-212. (2021) Zbl1469.11432MR4229182DOI10.1007/s40316-020-00139-1
- Chowla, S., Friedlander, J., 10.1017/S0017089500002718, Glasg. Math. J. 17 (1976), 47-52. (1976) Zbl0323.12006MR0417117DOI10.1017/S0017089500002718
- Hasse, H., 10.5169/seals-23925, Elem. Math. 20 (1965), 49-59 German. (1965) Zbl0128.03502MR0191889DOI10.5169/seals-23925
- Kim, H. K., Leu, M.-G., Ono, T., 10.3792/pjaa.63.222, Proc. Japan Acad., Ser. A 63 (1987), 222-224. (1987) Zbl0624.12002MR0907000DOI10.3792/pjaa.63.222
- Lang, H., 10.1515/crll.1968.233.123, J. Reine Angew. Math. 233 (1968), 123-175 German. (1968) Zbl0165.36504MR0238804DOI10.1515/crll.1968.233.123
- Lang, S., 10.1007/978-1-4612-0853-2, Graduate Texts in Mathematics 110. Springer, New York (1994). (1994) Zbl0811.11001MR1282723DOI10.1007/978-1-4612-0853-2
- Lapkova, K., 10.4064/aa153-3-4, Acta Arith. 153 (2012), 281-298. (2012) Zbl1329.11118MR2912719DOI10.4064/aa153-3-4
- Lemmermeyer, F., Algebraic Number Theory, Bilkent University, Bilkent (2006), Available at . (2006)
- Mollin, R. A., 10.1090/S0002-9939-1986-0826478-X, Proc. Am. Math. Soc. 96 (1986), 545-550. (1986) Zbl0591.12007MR0826478DOI10.1090/S0002-9939-1986-0826478-X
- Mollin, R. A., 10.1090/S0002-9939-1987-0908645-0, Proc. Am. Math. Soc. 101 (1987), 439-444. (1987) Zbl0632.12006MR0908645DOI10.1090/S0002-9939-1987-0908645-0
- Mollin, R. A., 10.1017/S0027763000000738, Nagoya Math. J. 105 (1987), 39-47. (1987) Zbl0591.12005MR0881007DOI10.1017/S0027763000000738
- Mollin, R. A., Williams, H. C., 10.1090/S0002-9939-1988-0934844-9, Proc. Am. Math. Soc. 102 (1988), 794-796. (1988) Zbl0649.12005MR0934844DOI10.1090/S0002-9939-1988-0934844-9
- Siegel, C. L., Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Gött., II. Math.-Phys. Kl. 10 (1969), 87-102 German. (1969) Zbl0186.08804MR0252349
- Weinberger, P. J., 10.1016/0022-314X(73)90049-8, J. Number Theory 5 (1973), 237-241. (1973) Zbl0287.12007MR0335471DOI10.1016/0022-314X(73)90049-8
- Yokoi, H., 10.1017/S0027763000012939, Nagoya Math. J. 33 (1968), 139-152. (1968) Zbl0167.04401MR0233803DOI10.1017/S0027763000012939
- Yokoi, H., 10.1016/0022-314X(70)90010-7, J. Number Theory 2 (1970), 106-115. (1970) Zbl0201.05703MR0252351DOI10.1016/0022-314X(70)90010-7
- Yokoi, H., Class-number one problem for certain kind of real quadratic fields, Class Numbers and Fundamental Units of Algebraic Number Fields Nagoya University, Nagoya (1986), 125-137. (1986) Zbl0612.12010MR0891892
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.