Multi-step-length gradient iterative method for separable nonlinear least squares problems
Hai-Rong Cui; Jing Lin; Jian-Nan Su
Kybernetika (2024)
- Issue: 2, page 197-209
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCui, Hai-Rong, Lin, Jing, and Su, Jian-Nan. "Multi-step-length gradient iterative method for separable nonlinear least squares problems." Kybernetika (2024): 197-209. <http://eudml.org/doc/299351>.
@article{Cui2024,
abstract = {Separable nonlinear least squares (SNLLS) problems are critical in various research and application fields, such as image restoration, machine learning, and system identification. Solving such problems presents a challenge due to their nonlinearity. The traditional gradient iterative algorithm often zigzags towards the optimal solution and is sensitive to the initial guesses of unknown parameters. In this paper, we improve the convergence rate of the traditional gradient method by implementing a multi-step-length gradient iterative algorithm. Moreover, we incorporate the variable projection (VP) strategy, taking advantage of the separable structure observed in SNLLS problems. We propose a multi-step-length gradient iterative-based VP (Mul-GI-VP) method to solve such nonlinear optimization problems. Our simulation results verify the feasibility and high efficiency of the proposed algorithm.},
author = {Cui, Hai-Rong, Lin, Jing, Su, Jian-Nan},
journal = {Kybernetika},
keywords = {separable nonlinear least squares; multi-step-length gradient iterative method; variable projection algorithm; image restoration},
language = {eng},
number = {2},
pages = {197-209},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Multi-step-length gradient iterative method for separable nonlinear least squares problems},
url = {http://eudml.org/doc/299351},
year = {2024},
}
TY - JOUR
AU - Cui, Hai-Rong
AU - Lin, Jing
AU - Su, Jian-Nan
TI - Multi-step-length gradient iterative method for separable nonlinear least squares problems
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 197
EP - 209
AB - Separable nonlinear least squares (SNLLS) problems are critical in various research and application fields, such as image restoration, machine learning, and system identification. Solving such problems presents a challenge due to their nonlinearity. The traditional gradient iterative algorithm often zigzags towards the optimal solution and is sensitive to the initial guesses of unknown parameters. In this paper, we improve the convergence rate of the traditional gradient method by implementing a multi-step-length gradient iterative algorithm. Moreover, we incorporate the variable projection (VP) strategy, taking advantage of the separable structure observed in SNLLS problems. We propose a multi-step-length gradient iterative-based VP (Mul-GI-VP) method to solve such nonlinear optimization problems. Our simulation results verify the feasibility and high efficiency of the proposed algorithm.
LA - eng
KW - separable nonlinear least squares; multi-step-length gradient iterative method; variable projection algorithm; image restoration
UR - http://eudml.org/doc/299351
ER -
References
top- Aravkin, A. Y., Drusvyatskiy, D., Leeuwen, T. van, , IEEE Trans. Automat. Control 63 (2017), 7, 2131-2138. MR3820213DOI
- Chen, G. Y., Gan, M., Chen, C. P., Chen, L., 10.1109/TIM.2018.2826798, IEEE Trans. Instrument. Measur. 67 (2018), 11, 2518-2525. DOI10.1109/TIM.2018.2826798
- Chen, G. Y., Gan, M., Chen, C. P., Li, H. X., , IEEE Trans. Cybernet. 51 (2021), 2, 614-623. DOI
- Chen, G. Y., Wang, S. Q., Gan, M., Chen, C. P., , IEEE Trans. Imagw Process. 30 (2021), 2, 1207-1218. MR4206220DOI
- Chen, J., Ding, F., , J. Vibration Control 17 (2011), 9, 1281-1286. MR2859041DOI
- Chen, J., Ding, F., Liu, Y., Zhu, Q., , Systems Control Lett. 115 (2018), 15-21. MR3786116DOI
- Chung, J., G, J., Nagy, , SIAM J. Scientif. Comput. 31 (2010), 6, 4654-4674. MR2594997DOI
- Cornelio, A., Piccolomini, E. L., Nagy, J. G., , Numer. Algorithms 65 (2014) 1, 23-42. MR3147677DOI
- Ding, F., , IET Control Theory Appl. 7 (2013), 1, 68-79. MR3088190DOI
- Ding, F., Liu, G., Liu, X. P., , IEEE Trans. Automat. Control 55 (2010), 8, 1976-1981. MR2681302DOI
- Ding, F., Liu, Y., Bao, B., , Proc. Inst. Mechanic. Engrs, Part I: J. Systems Control Engrg. 226 (2012), 1, 43-55. DOI
- Erichson, N. B., Zheng, P., Manohar, K., Brunton, S. L., Kutz, J. N., Aravkin, A. Y., , SIAM J. Appl. Math. 80 (2020), 2, 977-1002. MR4091178DOI
- Gan, M., Chen, C. P., Chen, G. Y., Chen, L., , IEEE Trans. Cybernet. 48 (2018), 10, 2866-2874. DOI
- Gan, M., Guan, Y., Chen, G. Y., Chen, C. P., Recursive variable projection algorithm for a class of separable nonlinear models., IEEE Trans. Neural Netw. Learn. Syst. (2020). MR4332261
- Gan, M., Li, H. X., Peng, H., , IEEE Trans. Cybernet. 45 (2014), 3, 462-471. DOI
- Gan, M., Peng, H., , Appl. Soft Comput. 12 (2012), 1, 174-181. DOI
- Golub, G., Pereyra, V., , Inverse Problems 19 (2003), R1. MR1991786DOI
- Golub, G. .H, Pereyr, V., , SIAM J. Numer. Snal. 10 (1973), 2, 413-432. MR0336980DOI
- Haggan, V., Ozaki, T., , Biometrika 68 (1981), 1, 189-196. MR0614955DOI
- Hansen, P. Ch., Nagy, J. G., O'leary, D. P., Deblurring images: matrices, spectra, and filtering., SIAM 2006. MR2271138
- Hussu, A, , Int. J. Control 15 (1972), 1, 79-82. DOI
- Kaufman, L., , BIT Numer. Math. 15 (1975), 1, 49-57. MR0501738DOI
- Li, J., Zheng, Y., Lin, Z., , Syst. Control Lett. 66 (2014), 104-110. MR3179836DOI
- Li, M., Abubakar, A., Gao, F., Habashy, T. M, , IEEE Trans. Antennas Propag. 64 (2015), 1, :332-335. MR3455550DOI
- Liu, Y., Ding, F., Shi, Y., , Automatica 50 (2014), 3, 962-970. MR3173998DOI
- Okatani, T., Deguchi, K., , Int. J. Comput. Vision 72 (2007), 3, 329-337. DOI
- R, M., Osborne, Smyth, G. K., , SIAM J. Scient. Comput. 16 (1995), 1, :119-138. MR1311681DOI
- Peng, H., Ozaki, T., Toyoda, Y., Shioya, H., Nakano, K., Haggan-Ozaki, V., Mori, M., , Control Engrg. Practice 12 (2004), 2, 191-203. DOI
- Ruhe, A., Wedin, Pe. A., , SIAM Rev. 22 (1980), 3, 318-337. MR0584380DOI
- Sjoberg, J., Viberg, M., Separable non-linear least-squares minimization-possible improvements for neural net fitting., In: Neural Networks for Signal Processing VII. Proc. 1997 IEEE Signal Processing Society Workshop, IEEE 1997, pp. 345-354.
- Stathopoulos, G., Korda, M., Jones, C. N., , IEEE Trans. Automat. Control. 62 (2016), 4, 1752-1767. MR3636331DOI
- Yang, H., Gao, J., Wu, Z., , IEEE Signal Process. Lett. 15 (2008), 289-292. DOI
- Yu, D., Chen, C. P., Xu, H., , IEEE Trans. Systems Man Cybernet.: Systems 52 (2021), 4, 2262-2274. DOI
- Yu, D., Xu, H., Chen, C. P., Bai, W., Wang, Z., Dynamic coverage control based on k-means., IEEE Trans. Industr. Electron. 2021.
- Zeng, J., He, T., Wang, M., , Systems Control Lett. 107 (2017), 36-43. MR3692336DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.