Global bifurcations in a dynamical model of recurrent neural networks
Anita Windisch; Péter L. Simon
Applications of Mathematics (2023)
- Volume: 68, Issue: 1, page 35-50
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- Beer, R. D., 10.1177/105971239500300405, Adapt. Behav. 3 (1995), 469-509 9999DOI99999 10.1177/1059712395003004 . (1995) DOI10.1177/105971239500300405
- Beer, R. D., Parameter space structure of continuous-time recurrent neural networks, Neural Comput. 18 (2006), 3009-3051 9999DOI99999 10.1162/neco.2006.18.12.3009 . (2006) Zbl1107.68075MR2265210
- Breakspear, M., Dynamic models of large-scale brain activity, Nature Neurosci. 20 (2017), 340-352 9999DOI99999 10.1038/nn.4497 . (2017)
- Brunel, N., Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J. Comput. Neurosci. 8 (2000), 183-208 9999DOI99999 10.1023/A:1008925309027 . (2000) Zbl1036.92008
- A. Ecker, B. Bagi, E. Vértes, O. Steinbach-Németh, M. R. Karlócai, O. I. Papp, I. Mik-lós, N. Hájos, T. F. Freund, A. I. Gulyás, S. Káli, Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3, eLife 11 (2022), Article ID e71850, 29 pages 9999DOI99999 10.7554/eLife.71850 . (2022)
- Ermentrout, B., 10.1088/0034-4885/61/4/002, Rep. Progr. Phys. 61 (1998), Article ID 353, 78 pages. (1998) DOI10.1088/0034-4885/61/4/002
- Ermentrout, B., Terman, D. H., Mathematical Foundations of Neuroscience, Interdisciplinary Applied Mathematics 35. Springer, New York (2010),9999DOI99999 10.1007/978-0-387-87708-2 . (2010) Zbl1320.92002MR2674516
- Fasoli, D., Cattani, A., Panzeri, S., The complexity of dynamics in small neural circuits, PLoS Comput. Biology 12 (2016), Article ID e1004992, 35 pages 9999DOI99999 10.1371/journal.pcbi.1004992 . (2016)
- Fasoli, D., Cattani, A., Panzeri, S., Bifurcation analysis of a sparse neural network with cubic topology, Mathematical and Theoretical Neuroscience Springer INdAM Series 24. Springer, Cham (2017), 87-98 9999DOI99999 10.1007/978-3-319-68297-65 . (2017) Zbl1401.92026MR3793028
- Govaerts, W., Kuznetsov, Y. A., DeWitte, V., Dhooge, A., Meijer, H. G. E., Mestrom, W., Rietand, A. M., Sautois, B., MATCONT and CL_MATCONT: Continuation Toolboxes in Matlab, Gent University and Utrecht University, Gent and Utrecht (2011) .
- Grossberg, S., Nonlinear neural networks: Principles, mechanisms, and architectures, Neural Netw. 1 (1988), 17-61 9999DOI99999 10.1016/0893-6080(88)90021-4 . (1988)
- Hopfield, J. J., Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79 (1982), 2554-2558 9999DOI99999 10.1073/pnas.79.8.255 . (1982) Zbl1369.92007MR0652033
- Hopfield, J. J., Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA 81 (1984), 3088-3092 9999DOI99999 10.1073/pnas.81.10.3088 . (1984) Zbl1371.92015
- Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, Applied Mathematical Sciences 112. Springer, New York (2004),9999DOI99999 10.1007/978-1-4757-3978-7 . (2004) Zbl1082.37002MR2071006
- Perko, L., Differential Equations and Dynamical Systems, Texts in Applied Mathematics 7. Springer, New York (2001),9999DOI99999 10.1007/978-1-4613-0003-8 . (2001) Zbl0973.34001MR1801796
- Trappenberg, T., Fundamentals of Computational Neuroscience, Oxford University Press, Oxford (2010),9999MR99999 2583115 . (2010) Zbl1179.92012MR2583115
- Windisch, A., Simon, P. L., The dynamics of the Hopfield model for homogeneous weight matrix, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 64 (2021), 235-247. (2021) Zbl07541738MR4612555