Positive solutions of a fourth-order differential equation with integral boundary conditions
Mathematica Bohemica (2023)
- Volume: 148, Issue: 4, page 583-601
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPadhi, Seshadev, and Graef, John R.. "Positive solutions of a fourth-order differential equation with integral boundary conditions." Mathematica Bohemica 148.4 (2023): 583-601. <http://eudml.org/doc/299359>.
@article{Padhi2023,
abstract = {We study the existence of positive solutions to the fourth-order two-point boundary value problem \[ \{\left\lbrace \begin\{array\}\{ll\} u^\{\prime \prime \prime \prime \}(t) + f(t,u(t))=0, & 0 < t < 1,\\ u^\{\prime \}(0) = u^\prime (1) = u^\{\prime \prime \}(0) =0, & u(0) = \alpha [u], \end\{array\}\right.\} \]
where $\alpha [u]=\int ^\{1\}_\{0\}u(t)\{\rm d\}A(t)$ is a Riemann-Stieltjes integral with $A \ge 0$ being a nondecreasing function of bounded variation and $f \in \mathcal \{C\}([0,1] \times \mathbb \{R\}_\{+\}, \mathbb \{R\}_\{+\})$. The sufficient conditions obtained are new and easy to apply. Their approach is based on Krasnoselskii’s fixed point theorem and the Avery-Peterson fixed point theorem.},
author = {Padhi, Seshadev, Graef, John R.},
journal = {Mathematica Bohemica},
keywords = {boundary value problem; fixed point; positive solution; cone; existence theorem},
language = {eng},
number = {4},
pages = {583-601},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive solutions of a fourth-order differential equation with integral boundary conditions},
url = {http://eudml.org/doc/299359},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Padhi, Seshadev
AU - Graef, John R.
TI - Positive solutions of a fourth-order differential equation with integral boundary conditions
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 583
EP - 601
AB - We study the existence of positive solutions to the fourth-order two-point boundary value problem \[ {\left\lbrace \begin{array}{ll} u^{\prime \prime \prime \prime }(t) + f(t,u(t))=0, & 0 < t < 1,\\ u^{\prime }(0) = u^\prime (1) = u^{\prime \prime }(0) =0, & u(0) = \alpha [u], \end{array}\right.} \]
where $\alpha [u]=\int ^{1}_{0}u(t){\rm d}A(t)$ is a Riemann-Stieltjes integral with $A \ge 0$ being a nondecreasing function of bounded variation and $f \in \mathcal {C}([0,1] \times \mathbb {R}_{+}, \mathbb {R}_{+})$. The sufficient conditions obtained are new and easy to apply. Their approach is based on Krasnoselskii’s fixed point theorem and the Avery-Peterson fixed point theorem.
LA - eng
KW - boundary value problem; fixed point; positive solution; cone; existence theorem
UR - http://eudml.org/doc/299359
ER -
References
top- Anderson, D. R., Avery, R. I., 10.1216/rmjm/1181069456, Rocky Mt. J. Math. 36 (2006), 367-380. (2006) Zbl1137.34008MR2234809DOI10.1216/rmjm/1181069456
- Avery, R. I., Peterson, A. C., 10.1016/S0898-1221(01)00156-0, Comput. Math. Appl. 42 (2001), 313-322. (2001) Zbl1005.47051MR1837993DOI10.1016/S0898-1221(01)00156-0
- Benaicha, S., Haddouchi, F., 10.1515/awutm-2016-0005, An. Univ. Vest Timiş., Ser. Mat.-Inform. 54 (2016), 73-86. (2016) MR3552473DOI10.1515/awutm-2016-0005
- Graef, J. R., Qian, C., Yang, B., 10.1016/S0022-247X(03)00545-6, J. Math. Anal. Appl. 287 (2003), 217-233. (2003) Zbl1054.34038MR2010266DOI10.1016/S0022-247X(03)00545-6
- Haddouchi, F., Guendouz, C., Benaicha, S., Existence and multiplicity of positive solutions to a fourth-order multi-point boundary value problem, Mat. Vesn. 73 (2021), 25-36. (2021) Zbl1474.34170MR4251817
- Han, X., Gao, H., Xu, J., 10.1155/2011/604046, Fixed Point Theory Appl. 2011 (2011), Article ID 604046, 11 pages. (2011) Zbl1225.34032MR2764775DOI10.1155/2011/604046
- Kang, P., Wei, Z., Xu, J., 10.1016/j.amc.2008.09.010, Appl. Math. Comput. 206 (2008), 245-256. (2008) Zbl1169.34043MR2474970DOI10.1016/j.amc.2008.09.010
- Krasnosel'skii, M. A., Positive Solutions of Operator Equations, P. Noordhoff, Groningen (1964). (1964) Zbl0121.10604MR0181881
- Li, Y., 10.1016/j.nonrwa.2015.07.016, Nonlinear Anal., Real World Appl. 27 (2016), 221-237. (2016) Zbl1331.74095MR3400525DOI10.1016/j.nonrwa.2015.07.016
- Ma, R., 10.32917/hmj/1150997947, Hiroshima Math. J. 33 (2003), 217-227. (2003) Zbl1048.34048MR1997695DOI10.32917/hmj/1150997947
- Padhi, S., Bhuvanagiri, S., Monotone iterative method for solutions of a cantilever beam equation with one free end, Adv. Nonlinear Var. Inequal. 23 (2020), 15-22. (2020)
- Padhi, S., Graef, J. R., Pati, S., 10.1515/fca-2018-0038, Fract. Calc. Appl. Anal. 21 (2018), 716-745. (2018) Zbl1406.34015MR3827151DOI10.1515/fca-2018-0038
- Shen, W., Positive solution for fourth-order second-point nonhomogeneous singular boundary value problems, Adv. Fixed Point Theory 5 (2015), 88-100. (2015)
- Sun, Y., Zhu, C., 10.1186/1687-1847-2013-51, Adv. Difference Equ. 2013 (2013), Article ID 51, 13 pages. (2013) Zbl1380.34044MR3037642DOI10.1186/1687-1847-2013-51
- Webb, J. R. L., Infante, G., Franco, D., 10.1017/S0308210506001041, Proc. R. Soc. Edinb., Sect. A, Math. 138 (2008), 427-446. (2008) Zbl1167.34004MR2406699DOI10.1017/S0308210506001041
- Wei, Y., Song, Q., Bai, Z., 10.1016/j.aml.2018.07.032, Appl. Math. Lett. 87 (2019), 101-107. (2019) Zbl1472.34042MR3848352DOI10.1016/j.aml.2018.07.032
- Yan, D., Ma, R., 10.1186/s13662-018-1904-4, Adv. Difference Equ. 2018 (2018), Article ID 443, 14 pages. (2018) Zbl1448.34062MR3882988DOI10.1186/s13662-018-1904-4
- Yang, B., 10.14232/ejqtde.2005.1.3, Electron J. Qual. Theory Differ. Equ. 2005 (2005), Article ID 3, 17 pages. (2005) Zbl1081.34025MR2121804DOI10.14232/ejqtde.2005.1.3
- Yang, B., 10.7153/dea-2017-09-33, Differ. Equ. Appl. 9 (2017), 495-504. (2017) Zbl1403.34024MR3737823DOI10.7153/dea-2017-09-33
- Zhang, M., Wei, Z., 10.1016/j.amc.2007.02.019, Appl. Math. Comput. 190 (2007), 1417-1431. (2007) Zbl1141.34018MR2339733DOI10.1016/j.amc.2007.02.019
- Zhang, X., Liu, L., 10.1016/j.amc.2007.04.028, Appl. Math. Comput. 194 (2007), 321-332. (2007) Zbl1193.34050MR2385904DOI10.1016/j.amc.2007.04.028
- Zou, Y., 10.1155/2017/4946198, J. Funct. Spaces 2017 (2017), Article ID 4946198, 5 pages. (2017) Zbl1377.34031MR3690388DOI10.1155/2017/4946198
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.