Another version of cosupport in
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 431-452
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topQin, Junquan, and Yang, Xiao Yan. "Another version of cosupport in ${\rm D}(R)$." Czechoslovak Mathematical Journal 73.2 (2023): 431-452. <http://eudml.org/doc/299361>.
@article{Qin2023,
abstract = {The goal of the article is to develop a theory dual to that of support in the derived category $\{\rm D\}(R)$. This is done by introducing ‘big’ and ‘small’ cosupport for complexes that are different from the cosupport in D. J. Benson, S. B. Iyengar, H. Krause (2012). We give some properties for cosupport that are similar, or rather dual, to those of support for complexes, study some relations between ‘big’ and ‘small’ cosupport and give some comparisons of support and cosupport. Finally, we investigate the dual notion of associated primes.},
author = {Qin, Junquan, Yang, Xiao Yan},
journal = {Czechoslovak Mathematical Journal},
keywords = {cosupport; support; coassociated prime; associated prime},
language = {eng},
number = {2},
pages = {431-452},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Another version of cosupport in $\{\rm D\}(R)$},
url = {http://eudml.org/doc/299361},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Qin, Junquan
AU - Yang, Xiao Yan
TI - Another version of cosupport in ${\rm D}(R)$
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 431
EP - 452
AB - The goal of the article is to develop a theory dual to that of support in the derived category ${\rm D}(R)$. This is done by introducing ‘big’ and ‘small’ cosupport for complexes that are different from the cosupport in D. J. Benson, S. B. Iyengar, H. Krause (2012). We give some properties for cosupport that are similar, or rather dual, to those of support for complexes, study some relations between ‘big’ and ‘small’ cosupport and give some comparisons of support and cosupport. Finally, we investigate the dual notion of associated primes.
LA - eng
KW - cosupport; support; coassociated prime; associated prime
UR - http://eudml.org/doc/299361
ER -
References
top- Benson, D. J., Iyengar, S. B., Krause, H., 10.24033/asens.2076, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 575-621. (2008) Zbl1171.18007MR2489634DOI10.24033/asens.2076
- Benson, D. J., Iyengar, S. B., Krause, H., 10.1515/CRELLE.2011.180, J. Reine Angew. Math. 673 (2012), 161-207. (2012) Zbl1271.18012MR2999131DOI10.1515/CRELLE.2011.180
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Christensen, L. W., 10.7146/math.scand.a-14336, Math. Scand. 89 (2001), 161-180. (2001) Zbl1021.13014MR1868172DOI10.7146/math.scand.a-14336
- Christensen, L. W., Foxby, H.-B., Hyperhomological Algebra with Applications to Commutative Rings, Available at https://www.math.ttu.edu/ lchriste/download/918-final.pdf (2006), 111 pages. (2006)
- Foxby, H.-B., 10.1016/0022-4049(79)90030-6, J. Pure Appl. Algebra 15 (1979), 149-172. (1979) Zbl0411.13006MR0535182DOI10.1016/0022-4049(79)90030-6
- Grothendieck, A., 10.1007/BFb0073971, Lecture Notes in Mathematics 41. Springer, New York (1967). (1967) Zbl0185.49202MR0224620DOI10.1007/BFb0073971
- Matlis, E., 10.1080/00927877408548611, Commun. Algebra 1 (1974), 87-144. (1974) Zbl0277.13011MR0344241DOI10.1080/00927877408548611
- Melkersson, L., Schenzel, P., 10.1017/S0013091500006258, Proc. Edinb. Math. Soc., II. Ser. 38 (1995), 121-131. (1995) Zbl0824.13011MR1317331DOI10.1017/S0013091500006258
- Neeman, A., 10.1016/0040-9383(92)90047-L, Topology 31 (1992), 519-532. (1992) Zbl0793.18008MR1174255DOI10.1016/0040-9383(92)90047-L
- Neeman, A., 10.1515/crelle.2011.028, J. Reine Angew. Math. 653 (2011), 221-243. (2011) Zbl1221.13030MR2794632DOI10.1515/crelle.2011.028
- Richardson, A. S., 10.1216/rmjm/1181069391, Rocky Mt. J. Math. 36 (2006), 1679-1703. (2006) Zbl1134.13008MR2285629DOI10.1216/rmjm/1181069391
- Sather-Wagstaff, S., Wicklein, R., 10.1080/00927872.2015.1087008, Commun. Algebra 45 (2017), 2569-2592. (2017) Zbl1386.13046MR3594539DOI10.1080/00927872.2015.1087008
- Yassemi, S., 10.1080/00927879508825288, Commun. Algebra 23 (1995), 1473-1498. (1995) Zbl0832.13004MR1317409DOI10.1080/00927879508825288
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.