On the inclusions of X Φ spaces

Seyyed Mohammad Tabatabaie; Alireza Bagheri Salec

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 1, page 65-72
  • ISSN: 0862-7959

Abstract

top
We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of X Φ spaces, where Φ is a Young function and X is a quasi-Banach function space on a σ -finite measure space ( Ω , 𝒜 , μ ) .

How to cite

top

Tabatabaie, Seyyed Mohammad, and Bagheri Salec, Alireza. "On the inclusions of $X^\Phi $ spaces." Mathematica Bohemica 148.1 (2023): 65-72. <http://eudml.org/doc/299362>.

@article{Tabatabaie2023,
abstract = {We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of $X^\Phi $ spaces, where $\Phi $ is a Young function and $X$ is a quasi-Banach function space on a $\sigma $-finite measure space $(\Omega ,\mathcal \{A\},\mu )$.},
author = {Tabatabaie, Seyyed Mohammad, Bagheri Salec, Alireza},
journal = {Mathematica Bohemica},
keywords = {Young function; Orlicz space; quasi-Banach function space; inclusion},
language = {eng},
number = {1},
pages = {65-72},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the inclusions of $X^\Phi $ spaces},
url = {http://eudml.org/doc/299362},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Tabatabaie, Seyyed Mohammad
AU - Bagheri Salec, Alireza
TI - On the inclusions of $X^\Phi $ spaces
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 1
SP - 65
EP - 72
AB - We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of $X^\Phi $ spaces, where $\Phi $ is a Young function and $X$ is a quasi-Banach function space on a $\sigma $-finite measure space $(\Omega ,\mathcal {A},\mu )$.
LA - eng
KW - Young function; Orlicz space; quasi-Banach function space; inclusion
UR - http://eudml.org/doc/299362
ER -

References

top
  1. Campo, R. del, Fernández, A., Mayoral, F., Naranjo, F., 10.1007/s13348-020-00295-1, Collect. Math. 72 (2021), 481-499. (2021) Zbl07401995MR4297141DOI10.1007/s13348-020-00295-1
  2. Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics 146. Marcel Dekker, New York (1991). (1991) Zbl0724.46032MR1113700
  3. Romero, J. L., 10.2307/2975553, Am. Math. Mon. 90 (1983), 203-206. (1983) Zbl0549.46018MR0691371DOI10.2307/2975553
  4. Sawano, Y., Tabatabaie, S. M., 10.1007/s41980-020-00437-y, Bull. Iran. Math. Soc. 47 (2021), 1227-1233. (2021) Zbl07377360MR4278242DOI10.1007/s41980-020-00437-y
  5. Subramanian, B., 10.2307/2320071, Am. Math. Mon. 85 (1978), 479-481. (1978) Zbl0388.46021MR0482134DOI10.2307/2320071
  6. Villani, A., 10.2307/2322503, Am. Math. Mon. 92 (1985), 485-487. (1985) Zbl0592.46028MR0801221DOI10.2307/2322503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.