Characterizing finite groups whose enhanced power graphs have universal vertices
David G. Costanzo; Mark L. Lewis; Stefano Schmidt; Eyob Tsegaye; Gabe Udell
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 637-645
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCostanzo, David G., et al. "Characterizing finite groups whose enhanced power graphs have universal vertices." Czechoslovak Mathematical Journal 74.2 (2024): 637-645. <http://eudml.org/doc/299372>.
@article{Costanzo2024,
abstract = {Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \lbrace 1\rbrace $ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.},
author = {Costanzo, David G., Lewis, Mark L., Schmidt, Stefano, Tsegaye, Eyob, Udell, Gabe},
journal = {Czechoslovak Mathematical Journal},
keywords = {enhanced power graph; universal vertex; diameter},
language = {eng},
number = {2},
pages = {637-645},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizing finite groups whose enhanced power graphs have universal vertices},
url = {http://eudml.org/doc/299372},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Costanzo, David G.
AU - Lewis, Mark L.
AU - Schmidt, Stefano
AU - Tsegaye, Eyob
AU - Udell, Gabe
TI - Characterizing finite groups whose enhanced power graphs have universal vertices
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 637
EP - 645
AB - Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \lbrace 1\rbrace $ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.
LA - eng
KW - enhanced power graph; universal vertex; diameter
UR - http://eudml.org/doc/299372
ER -
References
top- Aalipour, G., Akbari, S., Cameron, P. J., Nikandish, R., Shaveisi, F., On the structure of the power graph and the enhanced power graph of a group, Electron. J. Comb. 24 (2017), Article ID P3.16, 18 pages 9999DOI99999 10.37236/6497 . (2017) Zbl1369.05059MR3691533
- Abdollahi, A., Hassanabadi, A. Mohammadi, 10.1080/00927870701302081, Commun. Algebra 35 (2007), 2057-2081. (2007) Zbl1131.20016MR2331830DOI10.1080/00927870701302081
- Bera, S., Bhuniya, A. K., 10.1142/S0219498818501463, J. Algebra Appl. 17 (2018), Article ID 1850146, 8 pages. (2018) Zbl1392.05053MR3825307DOI10.1142/S0219498818501463
- Bera, S., Dey, H. K., 10.1515/jgth-2022-0057, J. Group Theory 25 (2022), 1109-1131. (2022) Zbl1510.20019MR4504122DOI10.1515/jgth-2022-0057
- Bera, S., Dey, H. K., Mukherjee, S. K., 10.1007/s00373-020-02267-5, Graphs Comb. 37 (2021), 591-603. (2021) Zbl1492.05076MR4221643DOI10.1007/s00373-020-02267-5
- Berkovich, Y., 10.1515/9783110208221, de Gruyter Expositions in Mathematics 46. Walter De Gruyter, Berlin (2008). (2008) Zbl1168.20001MR2464640DOI10.1515/9783110208221
- Cameron, P. J., 10.22108/IJGT.2021.127679.1681, Int. J. Group Theory 11 (2022), 53-107. (2022) Zbl1496.05070MR4346241DOI10.22108/IJGT.2021.127679.1681
- Costanzo, D. G., Lewis, M. L., Schmidt, S., Tsegaye, E., Udell, G., 10.1017/S0004972720001318, Bull. Aust. Math. Soc. 104 (2021), 295-301. (2021) Zbl07394396MR4308146DOI10.1017/S0004972720001318
- Imperatore, D., 10.1142/9789814277808_0008, Ischia Group Theory 2008 World Scientific, Hackensack (2009), 100-115. (2009) Zbl1191.20017MR2816425DOI10.1142/9789814277808_0008
- Imperatore, D., Lewis, M. L., 10.1017/S0004972710001747, Bull. Aust. Math. Soc. 83 (2011), 267-272. (2011) Zbl1220.20015MR2784785DOI10.1017/S0004972710001747
- Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92. AMS, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
- Ma, X., Kelarev, A., Lin, Y., Wang, K., 10.5614/ejgta.2022.10.1.6, Electron. J. Graph Theory Appl. 10 (2022), 89-111. (2022) Zbl1487.05119MR4446436DOI10.5614/ejgta.2022.10.1.6
- Ma, X., She, Y., 10.1142/S0219498820500206, J. Algebra Appl. 19 (2020), Article ID 2050020, 14 pages. (2020) Zbl1437.05098MR4065011DOI10.1142/S0219498820500206
- Mahmoudifar, A., Babai, A., 10.1142/S0219498822501766, J. Algebra Appl. 21 (2022), Article ID 2250176, 8 pages. (2022) Zbl1496.05075MR4474716DOI10.1142/S0219498822501766
- O'Bryant, K., Patrick, D., Smithline, L., Wepsic, E., Some facts about cycels and tidy groups, Mathematical Sciences Technical Reports (MSTR) 131 (1992), 8 pages Available at https://scholar.rose-hulman.edu/mathmstr/131. (1992)
- Suzuki, M., Group Theory. Volume 2, Grundlehren der Mathematischen Wissenschaften 248. Springer, New York (1986). (1986) Zbl0586.20001MR0815926
- Puttkamer, T. W. von, On the Finiteness of the Classifying Space for Virtually Cyclic Subgroups: Dissertation, Rheinischen Friedrich-Wilhelms-Universität, Bonn (2018), Available at https://core.ac.uk/download/pdf/322960861.pdf. (2018) MR3950648
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.