Characterizing finite groups whose enhanced power graphs have universal vertices

David G. Costanzo; Mark L. Lewis; Stefano Schmidt; Eyob Tsegaye; Gabe Udell

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 637-645
  • ISSN: 0011-4642

Abstract

top
Let G be a finite group and construct a graph Δ ( G ) by taking G { 1 } as the vertex set of Δ ( G ) and by drawing an edge between two vertices x and y if x , y is cyclic. Let K ( G ) be the set consisting of the universal vertices of Δ ( G ) along the identity element. For a solvable group G , we present a necessary and sufficient condition for K ( G ) to be nontrivial. We also develop a connection between Δ ( G ) and K ( G ) when | G | is divisible by two distinct primes and the diameter of Δ ( G ) is 2.

How to cite

top

Costanzo, David G., et al. "Characterizing finite groups whose enhanced power graphs have universal vertices." Czechoslovak Mathematical Journal 74.2 (2024): 637-645. <http://eudml.org/doc/299372>.

@article{Costanzo2024,
abstract = {Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \lbrace 1\rbrace $ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.},
author = {Costanzo, David G., Lewis, Mark L., Schmidt, Stefano, Tsegaye, Eyob, Udell, Gabe},
journal = {Czechoslovak Mathematical Journal},
keywords = {enhanced power graph; universal vertex; diameter},
language = {eng},
number = {2},
pages = {637-645},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizing finite groups whose enhanced power graphs have universal vertices},
url = {http://eudml.org/doc/299372},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Costanzo, David G.
AU - Lewis, Mark L.
AU - Schmidt, Stefano
AU - Tsegaye, Eyob
AU - Udell, Gabe
TI - Characterizing finite groups whose enhanced power graphs have universal vertices
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 637
EP - 645
AB - Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \lbrace 1\rbrace $ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.
LA - eng
KW - enhanced power graph; universal vertex; diameter
UR - http://eudml.org/doc/299372
ER -

References

top
  1. Aalipour, G., Akbari, S., Cameron, P. J., Nikandish, R., Shaveisi, F., On the structure of the power graph and the enhanced power graph of a group, Electron. J. Comb. 24 (2017), Article ID P3.16, 18 pages 9999DOI99999 10.37236/6497 . (2017) Zbl1369.05059MR3691533
  2. Abdollahi, A., Hassanabadi, A. Mohammadi, 10.1080/00927870701302081, Commun. Algebra 35 (2007), 2057-2081. (2007) Zbl1131.20016MR2331830DOI10.1080/00927870701302081
  3. Bera, S., Bhuniya, A. K., 10.1142/S0219498818501463, J. Algebra Appl. 17 (2018), Article ID 1850146, 8 pages. (2018) Zbl1392.05053MR3825307DOI10.1142/S0219498818501463
  4. Bera, S., Dey, H. K., 10.1515/jgth-2022-0057, J. Group Theory 25 (2022), 1109-1131. (2022) Zbl1510.20019MR4504122DOI10.1515/jgth-2022-0057
  5. Bera, S., Dey, H. K., Mukherjee, S. K., 10.1007/s00373-020-02267-5, Graphs Comb. 37 (2021), 591-603. (2021) Zbl1492.05076MR4221643DOI10.1007/s00373-020-02267-5
  6. Berkovich, Y., 10.1515/9783110208221, de Gruyter Expositions in Mathematics 46. Walter De Gruyter, Berlin (2008). (2008) Zbl1168.20001MR2464640DOI10.1515/9783110208221
  7. Cameron, P. J., 10.22108/IJGT.2021.127679.1681, Int. J. Group Theory 11 (2022), 53-107. (2022) Zbl1496.05070MR4346241DOI10.22108/IJGT.2021.127679.1681
  8. Costanzo, D. G., Lewis, M. L., Schmidt, S., Tsegaye, E., Udell, G., 10.1017/S0004972720001318, Bull. Aust. Math. Soc. 104 (2021), 295-301. (2021) Zbl07394396MR4308146DOI10.1017/S0004972720001318
  9. Imperatore, D., 10.1142/9789814277808_0008, Ischia Group Theory 2008 World Scientific, Hackensack (2009), 100-115. (2009) Zbl1191.20017MR2816425DOI10.1142/9789814277808_0008
  10. Imperatore, D., Lewis, M. L., 10.1017/S0004972710001747, Bull. Aust. Math. Soc. 83 (2011), 267-272. (2011) Zbl1220.20015MR2784785DOI10.1017/S0004972710001747
  11. Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92. AMS, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
  12. Ma, X., Kelarev, A., Lin, Y., Wang, K., 10.5614/ejgta.2022.10.1.6, Electron. J. Graph Theory Appl. 10 (2022), 89-111. (2022) Zbl1487.05119MR4446436DOI10.5614/ejgta.2022.10.1.6
  13. Ma, X., She, Y., 10.1142/S0219498820500206, J. Algebra Appl. 19 (2020), Article ID 2050020, 14 pages. (2020) Zbl1437.05098MR4065011DOI10.1142/S0219498820500206
  14. Mahmoudifar, A., Babai, A., 10.1142/S0219498822501766, J. Algebra Appl. 21 (2022), Article ID 2250176, 8 pages. (2022) Zbl1496.05075MR4474716DOI10.1142/S0219498822501766
  15. O'Bryant, K., Patrick, D., Smithline, L., Wepsic, E., Some facts about cycels and tidy groups, Mathematical Sciences Technical Reports (MSTR) 131 (1992), 8 pages Available at https://scholar.rose-hulman.edu/mathmstr/131. (1992) 
  16. Suzuki, M., Group Theory. Volume 2, Grundlehren der Mathematischen Wissenschaften 248. Springer, New York (1986). (1986) Zbl0586.20001MR0815926
  17. Puttkamer, T. W. von, On the Finiteness of the Classifying Space for Virtually Cyclic Subgroups: Dissertation, Rheinischen Friedrich-Wilhelms-Universität, Bonn (2018), Available at https://core.ac.uk/download/pdf/322960861.pdf. (2018) MR3950648

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.