On certain G L ( 6 ) form and its Rankin-Selberg convolution

Amrinder Kaur; Ayyadurai Sankaranarayanan

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 415-427
  • ISSN: 0011-4642

Abstract

top
We consider L G ( s ) to be the L -function attached to a particular automorphic form G on G L ( 6 ) . We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg L -function L G × G ( s ) . As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of L G × G ( s ) .

How to cite

top

Kaur, Amrinder, and Sankaranarayanan, Ayyadurai. "On certain $GL(6)$ form and its Rankin-Selberg convolution." Czechoslovak Mathematical Journal 74.2 (2024): 415-427. <http://eudml.org/doc/299381>.

@article{Kaur2024,
abstract = {We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_\{G \times G\}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_\{G \times G\}(s)$.},
author = {Kaur, Amrinder, Sankaranarayanan, Ayyadurai},
journal = {Czechoslovak Mathematical Journal},
keywords = {Maass form; automorphic form; Rankin-Selberg convolution},
language = {eng},
number = {2},
pages = {415-427},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On certain $GL(6)$ form and its Rankin-Selberg convolution},
url = {http://eudml.org/doc/299381},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Kaur, Amrinder
AU - Sankaranarayanan, Ayyadurai
TI - On certain $GL(6)$ form and its Rankin-Selberg convolution
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 415
EP - 427
AB - We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_{G \times G}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_{G \times G}(s)$.
LA - eng
KW - Maass form; automorphic form; Rankin-Selberg convolution
UR - http://eudml.org/doc/299381
ER -

References

top
  1. Bourgain, J., 10.1090/jams/860, J. Am. Math. Soc. 30 (2017), 205-224. (2017) Zbl1352.11065MR3556291DOI10.1090/jams/860
  2. Gelbart, S., Jacquet, H., 10.24033/asens.1355, Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. (1978) Zbl0406.10022MR0533066DOI10.24033/asens.1355
  3. Goldfeld, D., 10.1017/CBO9780511542923, Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). (2006) Zbl1108.11039MR2254662DOI10.1017/CBO9780511542923
  4. Heath-Brown, D. R., 10.1093/qmath/29.4.443, Q. J. Math. 29 (1978), 443-462. (1978) Zbl0394.10020MR0517737DOI10.1093/qmath/29.4.443
  5. Kim, H. H., 10.1090/S0894-0347-02-00410-1, J. Am. Math. Soc. 16 (2003), 139-183. (2003) Zbl1018.11024MR1937203DOI10.1090/S0894-0347-02-00410-1
  6. Kim, H. H., Shahidi, F., 10.2307/3062134, Ann. Math. (2) 155 (2002), 837-893. (2002) Zbl1040.11036MR1923967DOI10.2307/3062134
  7. Langlands, R. P., 10.1007/BFb0079065, Lectures in Modern Analysis and Applications III Lecture Notes in Mathematics 170. Springer, Berlin (1970), 18-61. (1970) Zbl0225.14022MR0302614DOI10.1007/BFb0079065
  8. Lau, Y.-K., Lü, G., 10.1093/qmath/haq012, Q. J. Math. 62 (2011), 687-716. (2011) Zbl1269.11044MR2825478DOI10.1093/qmath/haq012
  9. Lin, Y., Nunes, R., Qi, Z., 10.1093/imrn/rnac153, Int. Math. Res. Not. 153 (2022), 11453-11470. (2022) Zbl07711446MR4609788DOI10.1093/imrn/rnac153
  10. Meurman, T., On the order of the Maass L -function on the critical line, Number Theory. Volume 1 Colloquia Mathematica Societatis János Bolyai 51. North-Holland, Amsterdam (1990), 325-354. (1990) Zbl0724.11029MR1058223
  11. Nelson, P. D., 10.48550/arXiv.2109.15230, Available at (2021), 237 pages. (2021) DOI10.48550/arXiv.2109.15230
  12. Perelli, A., 10.1007/BF01761499, Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 287-306. (1982) Zbl0485.10030MR0663975DOI10.1007/BF01761499
  13. Rankin, R. A., 10.1017/S0305004100021095, Proc. Camb. Philos. Soc. 35 (1939), 351-356. (1939) Zbl0021.39201MR0000411DOI10.1017/S0305004100021095
  14. Selberg, A., Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. B 43 (1940), 47-50 German. (1940) Zbl0023.22201MR0002626

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.