On certain form and its Rankin-Selberg convolution
Amrinder Kaur; Ayyadurai Sankaranarayanan
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 415-427
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKaur, Amrinder, and Sankaranarayanan, Ayyadurai. "On certain $GL(6)$ form and its Rankin-Selberg convolution." Czechoslovak Mathematical Journal 74.2 (2024): 415-427. <http://eudml.org/doc/299381>.
@article{Kaur2024,
abstract = {We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_\{G \times G\}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_\{G \times G\}(s)$.},
author = {Kaur, Amrinder, Sankaranarayanan, Ayyadurai},
journal = {Czechoslovak Mathematical Journal},
keywords = {Maass form; automorphic form; Rankin-Selberg convolution},
language = {eng},
number = {2},
pages = {415-427},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On certain $GL(6)$ form and its Rankin-Selberg convolution},
url = {http://eudml.org/doc/299381},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Kaur, Amrinder
AU - Sankaranarayanan, Ayyadurai
TI - On certain $GL(6)$ form and its Rankin-Selberg convolution
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 415
EP - 427
AB - We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_{G \times G}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_{G \times G}(s)$.
LA - eng
KW - Maass form; automorphic form; Rankin-Selberg convolution
UR - http://eudml.org/doc/299381
ER -
References
top- Bourgain, J., 10.1090/jams/860, J. Am. Math. Soc. 30 (2017), 205-224. (2017) Zbl1352.11065MR3556291DOI10.1090/jams/860
- Gelbart, S., Jacquet, H., 10.24033/asens.1355, Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. (1978) Zbl0406.10022MR0533066DOI10.24033/asens.1355
- Goldfeld, D., 10.1017/CBO9780511542923, Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). (2006) Zbl1108.11039MR2254662DOI10.1017/CBO9780511542923
- Heath-Brown, D. R., 10.1093/qmath/29.4.443, Q. J. Math. 29 (1978), 443-462. (1978) Zbl0394.10020MR0517737DOI10.1093/qmath/29.4.443
- Kim, H. H., 10.1090/S0894-0347-02-00410-1, J. Am. Math. Soc. 16 (2003), 139-183. (2003) Zbl1018.11024MR1937203DOI10.1090/S0894-0347-02-00410-1
- Kim, H. H., Shahidi, F., 10.2307/3062134, Ann. Math. (2) 155 (2002), 837-893. (2002) Zbl1040.11036MR1923967DOI10.2307/3062134
- Langlands, R. P., 10.1007/BFb0079065, Lectures in Modern Analysis and Applications III Lecture Notes in Mathematics 170. Springer, Berlin (1970), 18-61. (1970) Zbl0225.14022MR0302614DOI10.1007/BFb0079065
- Lau, Y.-K., Lü, G., 10.1093/qmath/haq012, Q. J. Math. 62 (2011), 687-716. (2011) Zbl1269.11044MR2825478DOI10.1093/qmath/haq012
- Lin, Y., Nunes, R., Qi, Z., 10.1093/imrn/rnac153, Int. Math. Res. Not. 153 (2022), 11453-11470. (2022) Zbl07711446MR4609788DOI10.1093/imrn/rnac153
- Meurman, T., On the order of the Maass -function on the critical line, Number Theory. Volume 1 Colloquia Mathematica Societatis János Bolyai 51. North-Holland, Amsterdam (1990), 325-354. (1990) Zbl0724.11029MR1058223
- Nelson, P. D., 10.48550/arXiv.2109.15230, Available at (2021), 237 pages. (2021) DOI10.48550/arXiv.2109.15230
- Perelli, A., 10.1007/BF01761499, Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 287-306. (1982) Zbl0485.10030MR0663975DOI10.1007/BF01761499
- Rankin, R. A., 10.1017/S0305004100021095, Proc. Camb. Philos. Soc. 35 (1939), 351-356. (1939) Zbl0021.39201MR0000411DOI10.1017/S0305004100021095
- Selberg, A., Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. B 43 (1940), 47-50 German. (1940) Zbl0023.22201MR0002626
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.