The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula
Applications of Mathematics (2024)
- Volume: 69, Issue: 3, page 355-372
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLiu, Chein-Shan, and Li, Botong. "The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula." Applications of Mathematics 69.3 (2024): 355-372. <http://eudml.org/doc/299382>.
@article{Liu2024,
abstract = {The Sturm-Liouville eigenvalue problem is symmetric if the coefficients are even functions and the boundary conditions are symmetric. The eigenfunction is expressed in terms of orthonormal bases, which are constructed in a linear space of trial functions by using the Gram-Schmidt orthonormalization technique. Then an $n$-dimensional matrix eigenvalue problem is derived with a special matrix $\{\bf A\}:=[a_\{ij\}]$, that is, $a_\{ij\}=0$ if $i+j$ is odd.Based on the product formula, an integration method with a fictitious time, namely the fictitious time integration method (FTIM), is developed to obtain the higher-index eigenvalues. Also, we recover the symmetric potential function $q(x)$ in the Sturm-Liouville operator by specifying a few lower-index eigenvalues, based on the product formula and the Newton iterative method.},
author = {Liu, Chein-Shan, Li, Botong},
journal = {Applications of Mathematics},
keywords = {symmetric Sturm-Liouville problem; inverse potential problem; special matrix eigenvalue problem; product formula; fictitious time integration method},
language = {eng},
number = {3},
pages = {355-372},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula},
url = {http://eudml.org/doc/299382},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Liu, Chein-Shan
AU - Li, Botong
TI - The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 355
EP - 372
AB - The Sturm-Liouville eigenvalue problem is symmetric if the coefficients are even functions and the boundary conditions are symmetric. The eigenfunction is expressed in terms of orthonormal bases, which are constructed in a linear space of trial functions by using the Gram-Schmidt orthonormalization technique. Then an $n$-dimensional matrix eigenvalue problem is derived with a special matrix ${\bf A}:=[a_{ij}]$, that is, $a_{ij}=0$ if $i+j$ is odd.Based on the product formula, an integration method with a fictitious time, namely the fictitious time integration method (FTIM), is developed to obtain the higher-index eigenvalues. Also, we recover the symmetric potential function $q(x)$ in the Sturm-Liouville operator by specifying a few lower-index eigenvalues, based on the product formula and the Newton iterative method.
LA - eng
KW - symmetric Sturm-Liouville problem; inverse potential problem; special matrix eigenvalue problem; product formula; fictitious time integration method
UR - http://eudml.org/doc/299382
ER -
References
top- Andrew, A. L., 10.1016/S0377-0427(00)00479-9, J. Comput. Appl. Math. 125 (2000), 359-366. (2000) Zbl0970.65086MR1803202DOI10.1016/S0377-0427(00)00479-9
- Borg, G., 10.1007/BF02421600, Acta Math. 78 (1946), 1-96 German. (1946) Zbl0063.00523MR0015185DOI10.1007/BF02421600
- Çelik, I., 10.1016/j.amc.2003.11.011, Appl. Math. Comput. 160 (2005), 401-410. (2005) Zbl1064.65073MR2102818DOI10.1016/j.amc.2003.11.011
- Çelik, I., 10.1016/j.amc.2004.08.024, Appl. Math. Comput. 168 (2005), 125-134. (2005) Zbl1082.65555MR2170019DOI10.1016/j.amc.2004.08.024
- Dehghan, M., 10.1016/j.amc.2016.01.026, Appl. Math. Comput. 279 (2016), 249-257. (2016) Zbl1410.65276MR3458019DOI10.1016/j.amc.2016.01.026
- Ghelardoni, P., 10.1016/S0168-9274(96)00073-6, Appl. Numer. Math. 23 (1997), 311-325. (1997) Zbl0877.65056MR1445127DOI10.1016/S0168-9274(96)00073-6
- Ghelardoni, P., Magherini, C., 10.1016/j.amc.2010.08.036, Appl. Math. Comput. 217 (2010), 3032-3045. (2010) Zbl1204.65092MR2733748DOI10.1016/j.amc.2010.08.036
- Gould, S. H., 10.3138/9781487596002, Dover, New York (1995). (1995) Zbl0077.09603MR1350533DOI10.3138/9781487596002
- Hald, O. H., 10.1090/S0025-5718-1978-0501963-2, Math. Comput. 32 (1978), 687-705. (1978) Zbl0432.65050MR0501963DOI10.1090/S0025-5718-1978-0501963-2
- Hald, O. H., 10.1007/BF02545749, Acta Math. 141 (1978), 263-291. (1978) Zbl0431.34013MR0505878DOI10.1007/BF02545749
- Hinton, D., (Eds.), P. W. Schaefer, Spectral Theory & Computational Methods of Sturm-Liouville Problems, Lecture Notes in Pure and Applied Mathematics 191. Marcel Dekker, New York (1997). (1997) Zbl0866.00046MR1460546
- Kobayashi, M., 10.1016/0898-1221(89)90220-4, Comput. Math. Appl. 18 (1989), 357-364. (1989) Zbl0682.65054MR0999264DOI10.1016/0898-1221(89)90220-4
- Liu, C.-S., 10.3970/cmes.2008.026.157, CMES, Comput. Model. Eng. Sci. 26 (2008), 157-168. (2008) Zbl1232.65110MR2426635DOI10.3970/cmes.2008.026.157
- Liu, C.-S., 10.5539/jmr.v12n1p1, J. Math. Research 12 (2020), Article ID p1, 11 pages. (2020) DOI10.5539/jmr.v12n1p1
- Liu, C.-S., 10.5539/jmr.v14n4p1, J. Math. Res. 14 (2022), Article ID p1, 19 pages. (2022) DOI10.5539/jmr.v14n4p1
- Liu, C.-S., Atluri, S. N., 10.3970/cmes.2008.036.261, CMES, Comput. Model. Eng. Sci. 36 (2008), 261-285. (2008) Zbl1232.74007MR2489473DOI10.3970/cmes.2008.036.261
- Liu, C.-S., Atluri, S. N., A novel time integration method for solving a large system of non-linear algebraic equations, CMES, Comput. Model. Eng. Sci. 31 (2008), 71-83. (2008) Zbl1152.65428MR2450570
- Liu, C.-S., Chang, J.-R., Shen, J.-H., Chen, Y.-W., 10.3390/math10193689, Mathematics 10 (2022), Article ID 3689, 22 pages. (2022) DOI10.3390/math10193689
- Liu, C.-S., Li, B., 10.1016/j.compstruct.2017.03.014, Composite Struct. 171 (2017), 131-144. (2017) DOI10.1016/j.compstruct.2017.03.014
- Liu, C.-S., Li, B., 10.1016/j.aml.2017.04.023, Appl. Math. Lett. 73 (2017), 49-55. (2017) Zbl1375.65100MR3659907DOI10.1016/j.aml.2017.04.023
- Liu, C.-S., Li, B.-T., 10.1007/s10409-018-0799-3, Acta Mech. Sin. 35 (2019), 228-241. (2019) MR3908891DOI10.1007/s10409-018-0799-3
- Brunt, B. van, 10.1007/b97436, Universitext. Springer, New York (2004). (2004) Zbl1039.49001MR2004181DOI10.1007/b97436
- Berghe, G. Vanden, Daele, M. Van, 10.1016/j.cam.2005.12.022, J. Comput. Appl. Math. 200 (2007), 140-153. (2007) Zbl1110.65071MR2276821DOI10.1016/j.cam.2005.12.022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.