The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula

Chein-Shan Liu; Botong Li

Applications of Mathematics (2024)

  • Volume: 69, Issue: 3, page 355-372
  • ISSN: 0862-7940

Abstract

top
The Sturm-Liouville eigenvalue problem is symmetric if the coefficients are even functions and the boundary conditions are symmetric. The eigenfunction is expressed in terms of orthonormal bases, which are constructed in a linear space of trial functions by using the Gram-Schmidt orthonormalization technique. Then an n -dimensional matrix eigenvalue problem is derived with a special matrix 𝐀 : = [ a i j ] , that is, a i j = 0 if i + j is odd.Based on the product formula, an integration method with a fictitious time, namely the fictitious time integration method (FTIM), is developed to obtain the higher-index eigenvalues. Also, we recover the symmetric potential function q ( x ) in the Sturm-Liouville operator by specifying a few lower-index eigenvalues, based on the product formula and the Newton iterative method.

How to cite

top

Liu, Chein-Shan, and Li, Botong. "The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula." Applications of Mathematics 69.3 (2024): 355-372. <http://eudml.org/doc/299382>.

@article{Liu2024,
abstract = {The Sturm-Liouville eigenvalue problem is symmetric if the coefficients are even functions and the boundary conditions are symmetric. The eigenfunction is expressed in terms of orthonormal bases, which are constructed in a linear space of trial functions by using the Gram-Schmidt orthonormalization technique. Then an $n$-dimensional matrix eigenvalue problem is derived with a special matrix $\{\bf A\}:=[a_\{ij\}]$, that is, $a_\{ij\}=0$ if $i+j$ is odd.Based on the product formula, an integration method with a fictitious time, namely the fictitious time integration method (FTIM), is developed to obtain the higher-index eigenvalues. Also, we recover the symmetric potential function $q(x)$ in the Sturm-Liouville operator by specifying a few lower-index eigenvalues, based on the product formula and the Newton iterative method.},
author = {Liu, Chein-Shan, Li, Botong},
journal = {Applications of Mathematics},
keywords = {symmetric Sturm-Liouville problem; inverse potential problem; special matrix eigenvalue problem; product formula; fictitious time integration method},
language = {eng},
number = {3},
pages = {355-372},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula},
url = {http://eudml.org/doc/299382},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Liu, Chein-Shan
AU - Li, Botong
TI - The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 355
EP - 372
AB - The Sturm-Liouville eigenvalue problem is symmetric if the coefficients are even functions and the boundary conditions are symmetric. The eigenfunction is expressed in terms of orthonormal bases, which are constructed in a linear space of trial functions by using the Gram-Schmidt orthonormalization technique. Then an $n$-dimensional matrix eigenvalue problem is derived with a special matrix ${\bf A}:=[a_{ij}]$, that is, $a_{ij}=0$ if $i+j$ is odd.Based on the product formula, an integration method with a fictitious time, namely the fictitious time integration method (FTIM), is developed to obtain the higher-index eigenvalues. Also, we recover the symmetric potential function $q(x)$ in the Sturm-Liouville operator by specifying a few lower-index eigenvalues, based on the product formula and the Newton iterative method.
LA - eng
KW - symmetric Sturm-Liouville problem; inverse potential problem; special matrix eigenvalue problem; product formula; fictitious time integration method
UR - http://eudml.org/doc/299382
ER -

References

top
  1. Andrew, A. L., 10.1016/S0377-0427(00)00479-9, J. Comput. Appl. Math. 125 (2000), 359-366. (2000) Zbl0970.65086MR1803202DOI10.1016/S0377-0427(00)00479-9
  2. Borg, G., 10.1007/BF02421600, Acta Math. 78 (1946), 1-96 German. (1946) Zbl0063.00523MR0015185DOI10.1007/BF02421600
  3. Çelik, I., 10.1016/j.amc.2003.11.011, Appl. Math. Comput. 160 (2005), 401-410. (2005) Zbl1064.65073MR2102818DOI10.1016/j.amc.2003.11.011
  4. Çelik, I., 10.1016/j.amc.2004.08.024, Appl. Math. Comput. 168 (2005), 125-134. (2005) Zbl1082.65555MR2170019DOI10.1016/j.amc.2004.08.024
  5. Dehghan, M., 10.1016/j.amc.2016.01.026, Appl. Math. Comput. 279 (2016), 249-257. (2016) Zbl1410.65276MR3458019DOI10.1016/j.amc.2016.01.026
  6. Ghelardoni, P., 10.1016/S0168-9274(96)00073-6, Appl. Numer. Math. 23 (1997), 311-325. (1997) Zbl0877.65056MR1445127DOI10.1016/S0168-9274(96)00073-6
  7. Ghelardoni, P., Magherini, C., 10.1016/j.amc.2010.08.036, Appl. Math. Comput. 217 (2010), 3032-3045. (2010) Zbl1204.65092MR2733748DOI10.1016/j.amc.2010.08.036
  8. Gould, S. H., 10.3138/9781487596002, Dover, New York (1995). (1995) Zbl0077.09603MR1350533DOI10.3138/9781487596002
  9. Hald, O. H., 10.1090/S0025-5718-1978-0501963-2, Math. Comput. 32 (1978), 687-705. (1978) Zbl0432.65050MR0501963DOI10.1090/S0025-5718-1978-0501963-2
  10. Hald, O. H., 10.1007/BF02545749, Acta Math. 141 (1978), 263-291. (1978) Zbl0431.34013MR0505878DOI10.1007/BF02545749
  11. Hinton, D., (Eds.), P. W. Schaefer, Spectral Theory & Computational Methods of Sturm-Liouville Problems, Lecture Notes in Pure and Applied Mathematics 191. Marcel Dekker, New York (1997). (1997) Zbl0866.00046MR1460546
  12. Kobayashi, M., 10.1016/0898-1221(89)90220-4, Comput. Math. Appl. 18 (1989), 357-364. (1989) Zbl0682.65054MR0999264DOI10.1016/0898-1221(89)90220-4
  13. Liu, C.-S., 10.3970/cmes.2008.026.157, CMES, Comput. Model. Eng. Sci. 26 (2008), 157-168. (2008) Zbl1232.65110MR2426635DOI10.3970/cmes.2008.026.157
  14. Liu, C.-S., 10.5539/jmr.v12n1p1, J. Math. Research 12 (2020), Article ID p1, 11 pages. (2020) DOI10.5539/jmr.v12n1p1
  15. Liu, C.-S., 10.5539/jmr.v14n4p1, J. Math. Res. 14 (2022), Article ID p1, 19 pages. (2022) DOI10.5539/jmr.v14n4p1
  16. Liu, C.-S., Atluri, S. N., 10.3970/cmes.2008.036.261, CMES, Comput. Model. Eng. Sci. 36 (2008), 261-285. (2008) Zbl1232.74007MR2489473DOI10.3970/cmes.2008.036.261
  17. Liu, C.-S., Atluri, S. N., A novel time integration method for solving a large system of non-linear algebraic equations, CMES, Comput. Model. Eng. Sci. 31 (2008), 71-83. (2008) Zbl1152.65428MR2450570
  18. Liu, C.-S., Chang, J.-R., Shen, J.-H., Chen, Y.-W., 10.3390/math10193689, Mathematics 10 (2022), Article ID 3689, 22 pages. (2022) DOI10.3390/math10193689
  19. Liu, C.-S., Li, B., 10.1016/j.compstruct.2017.03.014, Composite Struct. 171 (2017), 131-144. (2017) DOI10.1016/j.compstruct.2017.03.014
  20. Liu, C.-S., Li, B., 10.1016/j.aml.2017.04.023, Appl. Math. Lett. 73 (2017), 49-55. (2017) Zbl1375.65100MR3659907DOI10.1016/j.aml.2017.04.023
  21. Liu, C.-S., Li, B.-T., 10.1007/s10409-018-0799-3, Acta Mech. Sin. 35 (2019), 228-241. (2019) MR3908891DOI10.1007/s10409-018-0799-3
  22. Brunt, B. van, 10.1007/b97436, Universitext. Springer, New York (2004). (2004) Zbl1039.49001MR2004181DOI10.1007/b97436
  23. Berghe, G. Vanden, Daele, M. Van, 10.1016/j.cam.2005.12.022, J. Comput. Appl. Math. 200 (2007), 140-153. (2007) Zbl1110.65071MR2276821DOI10.1016/j.cam.2005.12.022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.