Finite time stability and relative controllability of second order linear differential systems with pure delay
Mengmeng Li; Michal Fečkan; JinRong Wang
Applications of Mathematics (2023)
- Volume: 68, Issue: 3, page 305-327
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLi, Mengmeng, Fečkan, Michal, and Wang, JinRong. "Finite time stability and relative controllability of second order linear differential systems with pure delay." Applications of Mathematics 68.3 (2023): 305-327. <http://eudml.org/doc/299384>.
@article{Li2023,
abstract = {We first consider the finite time stability of second order linear differential systems with pure delay via giving a number of properties of delayed matrix functions. We secondly give sufficient and necessary conditions to examine that a linear delay system is relatively controllable. Further, we apply the fixed-point theorem to derive a relatively controllable result for a semilinear system. Finally, some examples are presented to illustrate the validity of the main theorems.},
author = {Li, Mengmeng, Fečkan, Michal, Wang, JinRong},
journal = {Applications of Mathematics},
keywords = {finite time stability; relative controllability; second order; delayed matrix function},
language = {eng},
number = {3},
pages = {305-327},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finite time stability and relative controllability of second order linear differential systems with pure delay},
url = {http://eudml.org/doc/299384},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Li, Mengmeng
AU - Fečkan, Michal
AU - Wang, JinRong
TI - Finite time stability and relative controllability of second order linear differential systems with pure delay
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 305
EP - 327
AB - We first consider the finite time stability of second order linear differential systems with pure delay via giving a number of properties of delayed matrix functions. We secondly give sufficient and necessary conditions to examine that a linear delay system is relatively controllable. Further, we apply the fixed-point theorem to derive a relatively controllable result for a semilinear system. Finally, some examples are presented to illustrate the validity of the main theorems.
LA - eng
KW - finite time stability; relative controllability; second order; delayed matrix function
UR - http://eudml.org/doc/299384
ER -
References
top- Diblík, J., Fečkan, M., Pospíšil, M., 10.1007/s11253-013-0765-y, Ukr. Math. J. 65 (2013), 64-76. (2013) Zbl1283.34057MR3104884DOI10.1007/s11253-013-0765-y
- Diblík, J., Fečkan, M., Pospíšil, M., 10.1137/140953654, SIAM J. Control Optim. 52 (2014), 1745-1760. (2014) Zbl1295.93008MR3206982DOI10.1137/140953654
- Diblík, J., Khusainov, D. Y., Růžičková, M., 10.1137/070689085, SIAM J. Control Optim. 47 (2008), 1140-1149. (2008) Zbl1161.93004MR2407011DOI10.1137/070689085
- Elshenhab, A. M., Wang, X. T., 10.1016/j.amc.2021.126443, Appl. Math. Comput. 410 (2021), Article ID 126443, 13 pages. (2021) Zbl07425968MR4274895DOI10.1016/j.amc.2021.126443
- Fečkan, M., Wang, J., Zhou, Y., 10.1007/s10957-012-0174-7, J. Optim. Theory Appl. 156 (2013), 79-95. (2013) Zbl1263.93031MR3019302DOI10.1007/s10957-012-0174-7
- Gantmakher, F. R., Theory of Matrices, Nauka, Moskva (1988), Russian. (1988) Zbl0666.15002MR0986246
- Khusainov, D. Y., Diblík, J., Růžičková, M., Lukáčová, J., 10.1007/s11072-008-0030-8, Nonlinear Oscil., N.Y. 11 (2008), 276-285. (2008) Zbl1276.34055MR2510692DOI10.1007/s11072-008-0030-8
- Khusainov, D. Y., Shuklin, G. V., 10.1007/s10778-005-0079-3, Int. Appl. Mech. 41 (2005), 210-221. (2005) Zbl1100.34062MR2190935DOI10.1007/s10778-005-0079-3
- Lazarević, M. P., Spasić, A. M., 10.1016/j.mcm.2008.09.011, Math. Comput. Modelling 49 (2009), 475-481. (2009) Zbl1165.34408MR2483650DOI10.1016/j.mcm.2008.09.011
- Li, M., Wang, J., 10.1016/j.aml.2016.09.004, Appl. Math. Lett. 64 (2017), 170-176. (2017) Zbl1354.34130MR3564757DOI10.1016/j.aml.2016.09.004
- Li, M., Wang, J., 10.1016/j.amc.2017.11.063, Appl. Math. Comput. 324 (2018), 254-265. (2018) Zbl1426.34110MR3743671DOI10.1016/j.amc.2017.11.063
- Li, X., Yang, X., Song, S., 10.1016/j.automatica.2019.01.031, Automatica 103 (2019), 135-140. (2019) Zbl1415.93188MR3911637DOI10.1016/j.automatica.2019.01.031
- Liang, C., Wang, J., O'Regan, D., 10.14232/ejqtde.2017.1.47, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 47, 18 pages. (2017) Zbl1413.34256MR3661723DOI10.14232/ejqtde.2017.1.47
- Liang, C., Wang, J., O'Regan, D., 10.1016/j.aml.2017.09.015, Appl. Math. Lett. 77 (2018), 72-78. (2018) Zbl1462.34105MR3725232DOI10.1016/j.aml.2017.09.015
- Pospíšil, M., 10.1137/15M1024287, SIAM J. Control Optim. 55 (2017), 835-855. (2017) Zbl1368.34093MR3625799DOI10.1137/15M1024287
- Pospíšil, M., 10.3846/mma.2020.11194, Math. Model. Anal. 25 (2020), 303-322. (2020) Zbl1476.34143MR4116589DOI10.3846/mma.2020.11194
- Si, Y., Wang, J., Fečkan, M., 10.1016/j.amc.2020.125139, Appl. Math. Comput. 376 (2020), Article ID 125139, 24 pages. (2020) Zbl1475.93015MR4070317DOI10.1016/j.amc.2020.125139
- Wang, J., Fečkan, M., Zhou, Y., 10.4310/DPDE.2014.v11.n1.a4, Dyn. Partial Differ. Equ. 11 (2014), 71-87. (2014) Zbl1314.47117MR3194051DOI10.4310/DPDE.2014.v11.n1.a4
- Wu, G.-C., Baleanu, D., Zeng, S.-D., 10.1016/j.cnsns.2017.09.001, Commun. Nonlinear Sci. Numer. Simul. 57 (2018), 299-308. (2018) Zbl07263288MR3724839DOI10.1016/j.cnsns.2017.09.001
- You, Z., Wang, J., O'Regan, D., Zhou, Y., 10.1002/mma.5400, Math. Methods Appl. Sci. 42 (2019), 954-968. (2019) Zbl1410.34235MR3905829DOI10.1002/mma.5400
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.