A new diagonal quasi-Newton algorithm for unconstrained optimization problems
Applications of Mathematics (2024)
- Volume: 69, Issue: 4, page 501-512
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNosrati, Mahsa, and Amini, Keyvan. "A new diagonal quasi-Newton algorithm for unconstrained optimization problems." Applications of Mathematics 69.4 (2024): 501-512. <http://eudml.org/doc/299387>.
@article{Nosrati2024,
abstract = {We present a new diagonal quasi-Newton method for solving unconstrained optimization problems based on the weak secant equation. To control the diagonal elements, the new method uses new criteria to generate the Hessian approximation. We establish the global convergence of the proposed method with the Armijo line search. Numerical results on a collection of standard test problems demonstrate the superiority of the proposed method over several existing diagonal methods.},
author = {Nosrati, Mahsa, Amini, Keyvan},
journal = {Applications of Mathematics},
keywords = {unconstrained optimization; diagonal quasi-Newton method; weak secant equation; global convergence},
language = {eng},
number = {4},
pages = {501-512},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new diagonal quasi-Newton algorithm for unconstrained optimization problems},
url = {http://eudml.org/doc/299387},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Nosrati, Mahsa
AU - Amini, Keyvan
TI - A new diagonal quasi-Newton algorithm for unconstrained optimization problems
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 501
EP - 512
AB - We present a new diagonal quasi-Newton method for solving unconstrained optimization problems based on the weak secant equation. To control the diagonal elements, the new method uses new criteria to generate the Hessian approximation. We establish the global convergence of the proposed method with the Armijo line search. Numerical results on a collection of standard test problems demonstrate the superiority of the proposed method over several existing diagonal methods.
LA - eng
KW - unconstrained optimization; diagonal quasi-Newton method; weak secant equation; global convergence
UR - http://eudml.org/doc/299387
ER -
References
top- Andrei, N., 10.1007/s11075-006-9023-9, Numer. Algorithms 42 (2006), 63-73. (2006) Zbl1101.65058MR2249567DOI10.1007/s11075-006-9023-9
- Andrei, N., An unconstrained optimization test functions collection, Adv. Model. Optim. 10 (2008), 147-161. (2008) Zbl1161.90486MR2424936
- Andrei, N., 10.1080/02331934.2018.1482298, Optimization 67 (2018), 1553-1568. (2018) Zbl1402.65049MR3877965DOI10.1080/02331934.2018.1482298
- Andrei, N., 10.1007/s11075-018-0562-7, Numer. Algorithms 81 (2019), 575-590. (2019) Zbl1416.49025MR3953161DOI10.1007/s11075-018-0562-7
- Andrei, N., 10.1080/02331934.2020.1712391, Optimization 70 (2021), 345-360. (2021) Zbl1460.90204MR4207210DOI10.1080/02331934.2020.1712391
- Armijo, L., 10.2140/pjm.1966.16.1, Pac. J. Math. 16 (1966), 1-3. (1966) Zbl0202.46105MR0191071DOI10.2140/pjm.1966.16.1
- Barzilai, J., Borwein, J. M., 10.1093/imanum/8.1.141, IMA J. Numer. Anal. 8 (1988), 141-148. (1988) Zbl0638.65055MR0967848DOI10.1093/imanum/8.1.141
- Bongartz, I., Conn, A. R., Gould, N., Toint, P. L., 10.1145/200979.201043, ACM Trans. Math. Softw. 21 (1995), 123-160. (1995) Zbl0886.65058DOI10.1145/200979.201043
- C. G. Broyden, J. E. Dennis, Jr., J. J. Moré, 10.1093/imamat/12.3.223, J. Inst. Math. Appl. 12 (1973), 223-245 9999DOI99999 10.1093/imamat/12.3.223 . (1973) Zbl0282.65041MR0341853DOI10.1093/imamat/12.3.223
- J. E. Dennis, Jr., J. J. Moré, 10.1090/S0025-5718-1974-0343581-1, Math. Comput. 28 (1974), 549-560. (1974) Zbl0282.65042MR0343581DOI10.1090/S0025-5718-1974-0343581-1
- J. E. Dennis, Jr., J. J. Moré, 10.1137/101900, SIAM Rev. 19 (1977), 46-89. (1977) Zbl0356.65041MR0445812DOI10.1137/101900
- J. E. Dennis, Jr., H. Wolkowicz, 10.1137/073006, SIAM J. Numer. Anal. 30 (1993), 1291-1314. (1993) Zbl0802.65081MR1239822DOI10.1137/073006
- Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 201-213. (2002) Zbl1049.90004MR1875515DOI10.1007/s101070100263
- Farid, M., Leong, W. J., Zheng, L., A new diagonal gradient-type method for large scale unconstrained optimization, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 75 (2013), 57-64. (2013) Zbl1299.65118MR3032542
- Gill, P. E., Murray, W., Conjugate-gradient methods for large-scale nonlinear optimization, Technical Report SOL-79-15 Stanford University, Stanford (1979), 1-66. (1979)
- Goldstein, A. A., 10.1137/030301, J. Soc. Ind. Appl. Math., Ser. A: Control 3 (1965), 147-151. (1965) Zbl0221.65094MR0184777DOI10.1137/030301
- Leong, W. J., Enshaei, S., Kek, S. L., 10.1007/s11075-020-00930-9, Numer. Algorithms 86 (2021), 1225-1241. (2021) Zbl1464.90099MR4211118DOI10.1007/s11075-020-00930-9
- Leong, W. J., Farid, M., Hassan, M. A., Improved Hessian approximation with modified quasi-Cauchy relation for a gradient-type method, Adv. Model. Optim. 12 (2010), 37-44. (2010) Zbl1332.90346MR2591783
- Nash, S. G., 10.1137/0906042, SIAM J. Sci. Stat. Comput. 6 (1985), 599-616. (1985) Zbl0592.65038MR0791188DOI10.1137/0906042
- Nocedal, J., 10.1090/S0025-5718-1980-0572855-7, Math. Comput. 35 (1980), 773-782. (1980) Zbl0464.65037MR0572855DOI10.1090/S0025-5718-1980-0572855-7
- Nocedal, J., Wright, S. J., 10.1007/b98874, Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). (2006) Zbl1104.65059MR2244940DOI10.1007/b98874
- Powell, M. J. D., A new algorithm for unconstrained optimization, Nonlinear Programming Elsevier, Amsterdam (1970), 31-65 9999DOI99999 10.1016/B978-0-12-597050-1.50006-3 . (1970) Zbl0228.90043MR0272162
- Raydan, M., 10.1137/S1052623494266365, SIAM J. Optim. 7 (1997), 26-33. (1997) Zbl0898.90119MR1430555DOI10.1137/S1052623494266365
- Wolfe, P., 10.1137/101103, SIAM Rev. 11 (1969), 226-235. (1969) Zbl0177.20603MR0250453DOI10.1137/101103
- Zhu, M., Nazareth, J. L., Wolkowicz, H., 10.1137/S1052623498331793, SIAM J. Optim. 9 (1999), 1192-1204. (1999) Zbl1013.90137MR1724783DOI10.1137/S1052623498331793
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.