A new diagonal quasi-Newton algorithm for unconstrained optimization problems

Mahsa Nosrati; Keyvan Amini

Applications of Mathematics (2024)

  • Volume: 69, Issue: 4, page 501-512
  • ISSN: 0862-7940

Abstract

top
We present a new diagonal quasi-Newton method for solving unconstrained optimization problems based on the weak secant equation. To control the diagonal elements, the new method uses new criteria to generate the Hessian approximation. We establish the global convergence of the proposed method with the Armijo line search. Numerical results on a collection of standard test problems demonstrate the superiority of the proposed method over several existing diagonal methods.

How to cite

top

Nosrati, Mahsa, and Amini, Keyvan. "A new diagonal quasi-Newton algorithm for unconstrained optimization problems." Applications of Mathematics 69.4 (2024): 501-512. <http://eudml.org/doc/299387>.

@article{Nosrati2024,
abstract = {We present a new diagonal quasi-Newton method for solving unconstrained optimization problems based on the weak secant equation. To control the diagonal elements, the new method uses new criteria to generate the Hessian approximation. We establish the global convergence of the proposed method with the Armijo line search. Numerical results on a collection of standard test problems demonstrate the superiority of the proposed method over several existing diagonal methods.},
author = {Nosrati, Mahsa, Amini, Keyvan},
journal = {Applications of Mathematics},
keywords = {unconstrained optimization; diagonal quasi-Newton method; weak secant equation; global convergence},
language = {eng},
number = {4},
pages = {501-512},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new diagonal quasi-Newton algorithm for unconstrained optimization problems},
url = {http://eudml.org/doc/299387},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Nosrati, Mahsa
AU - Amini, Keyvan
TI - A new diagonal quasi-Newton algorithm for unconstrained optimization problems
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 501
EP - 512
AB - We present a new diagonal quasi-Newton method for solving unconstrained optimization problems based on the weak secant equation. To control the diagonal elements, the new method uses new criteria to generate the Hessian approximation. We establish the global convergence of the proposed method with the Armijo line search. Numerical results on a collection of standard test problems demonstrate the superiority of the proposed method over several existing diagonal methods.
LA - eng
KW - unconstrained optimization; diagonal quasi-Newton method; weak secant equation; global convergence
UR - http://eudml.org/doc/299387
ER -

References

top
  1. Andrei, N., 10.1007/s11075-006-9023-9, Numer. Algorithms 42 (2006), 63-73. (2006) Zbl1101.65058MR2249567DOI10.1007/s11075-006-9023-9
  2. Andrei, N., An unconstrained optimization test functions collection, Adv. Model. Optim. 10 (2008), 147-161. (2008) Zbl1161.90486MR2424936
  3. Andrei, N., 10.1080/02331934.2018.1482298, Optimization 67 (2018), 1553-1568. (2018) Zbl1402.65049MR3877965DOI10.1080/02331934.2018.1482298
  4. Andrei, N., 10.1007/s11075-018-0562-7, Numer. Algorithms 81 (2019), 575-590. (2019) Zbl1416.49025MR3953161DOI10.1007/s11075-018-0562-7
  5. Andrei, N., 10.1080/02331934.2020.1712391, Optimization 70 (2021), 345-360. (2021) Zbl1460.90204MR4207210DOI10.1080/02331934.2020.1712391
  6. Armijo, L., 10.2140/pjm.1966.16.1, Pac. J. Math. 16 (1966), 1-3. (1966) Zbl0202.46105MR0191071DOI10.2140/pjm.1966.16.1
  7. Barzilai, J., Borwein, J. M., 10.1093/imanum/8.1.141, IMA J. Numer. Anal. 8 (1988), 141-148. (1988) Zbl0638.65055MR0967848DOI10.1093/imanum/8.1.141
  8. Bongartz, I., Conn, A. R., Gould, N., Toint, P. L., 10.1145/200979.201043, ACM Trans. Math. Softw. 21 (1995), 123-160. (1995) Zbl0886.65058DOI10.1145/200979.201043
  9. C. G. Broyden, J. E. Dennis, Jr., J. J. Moré, 10.1093/imamat/12.3.223, J. Inst. Math. Appl. 12 (1973), 223-245 9999DOI99999 10.1093/imamat/12.3.223 . (1973) Zbl0282.65041MR0341853DOI10.1093/imamat/12.3.223
  10. J. E. Dennis, Jr., J. J. Moré, 10.1090/S0025-5718-1974-0343581-1, Math. Comput. 28 (1974), 549-560. (1974) Zbl0282.65042MR0343581DOI10.1090/S0025-5718-1974-0343581-1
  11. J. E. Dennis, Jr., J. J. Moré, 10.1137/101900, SIAM Rev. 19 (1977), 46-89. (1977) Zbl0356.65041MR0445812DOI10.1137/101900
  12. J. E. Dennis, Jr., H. Wolkowicz, 10.1137/073006, SIAM J. Numer. Anal. 30 (1993), 1291-1314. (1993) Zbl0802.65081MR1239822DOI10.1137/073006
  13. Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 201-213. (2002) Zbl1049.90004MR1875515DOI10.1007/s101070100263
  14. Farid, M., Leong, W. J., Zheng, L., A new diagonal gradient-type method for large scale unconstrained optimization, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 75 (2013), 57-64. (2013) Zbl1299.65118MR3032542
  15. Gill, P. E., Murray, W., Conjugate-gradient methods for large-scale nonlinear optimization, Technical Report SOL-79-15 Stanford University, Stanford (1979), 1-66. (1979) 
  16. Goldstein, A. A., 10.1137/030301, J. Soc. Ind. Appl. Math., Ser. A: Control 3 (1965), 147-151. (1965) Zbl0221.65094MR0184777DOI10.1137/030301
  17. Leong, W. J., Enshaei, S., Kek, S. L., 10.1007/s11075-020-00930-9, Numer. Algorithms 86 (2021), 1225-1241. (2021) Zbl1464.90099MR4211118DOI10.1007/s11075-020-00930-9
  18. Leong, W. J., Farid, M., Hassan, M. A., Improved Hessian approximation with modified quasi-Cauchy relation for a gradient-type method, Adv. Model. Optim. 12 (2010), 37-44. (2010) Zbl1332.90346MR2591783
  19. Nash, S. G., 10.1137/0906042, SIAM J. Sci. Stat. Comput. 6 (1985), 599-616. (1985) Zbl0592.65038MR0791188DOI10.1137/0906042
  20. Nocedal, J., 10.1090/S0025-5718-1980-0572855-7, Math. Comput. 35 (1980), 773-782. (1980) Zbl0464.65037MR0572855DOI10.1090/S0025-5718-1980-0572855-7
  21. Nocedal, J., Wright, S. J., 10.1007/b98874, Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). (2006) Zbl1104.65059MR2244940DOI10.1007/b98874
  22. Powell, M. J. D., A new algorithm for unconstrained optimization, Nonlinear Programming Elsevier, Amsterdam (1970), 31-65 9999DOI99999 10.1016/B978-0-12-597050-1.50006-3 . (1970) Zbl0228.90043MR0272162
  23. Raydan, M., 10.1137/S1052623494266365, SIAM J. Optim. 7 (1997), 26-33. (1997) Zbl0898.90119MR1430555DOI10.1137/S1052623494266365
  24. Wolfe, P., 10.1137/101103, SIAM Rev. 11 (1969), 226-235. (1969) Zbl0177.20603MR0250453DOI10.1137/101103
  25. Zhu, M., Nazareth, J. L., Wolkowicz, H., 10.1137/S1052623498331793, SIAM J. Optim. 9 (1999), 1192-1204. (1999) Zbl1013.90137MR1724783DOI10.1137/S1052623498331793

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.