Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces
Santosh Kumar; Johnson Allen Kessy
Mathematica Bohemica (2023)
- Volume: 148, Issue: 2, page 223-236
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKumar, Santosh, and Kessy, Johnson Allen. "Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces." Mathematica Bohemica 148.2 (2023): 223-236. <http://eudml.org/doc/299388>.
@article{Kumar2023,
abstract = {The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.},
author = {Kumar, Santosh, Kessy, Johnson Allen},
journal = {Mathematica Bohemica},
keywords = {partial metric space; weak compatible mapping; hybrid pair of mapping},
language = {eng},
number = {2},
pages = {223-236},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces},
url = {http://eudml.org/doc/299388},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Kumar, Santosh
AU - Kessy, Johnson Allen
TI - Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 2
SP - 223
EP - 236
AB - The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.
LA - eng
KW - partial metric space; weak compatible mapping; hybrid pair of mapping
UR - http://eudml.org/doc/299388
ER -
References
top- Abbas, M., Rhoades, B. E., 10.1016/j.amc.2009.04.085, Appl. Math. Comput. 215 (2009), 262-269. (2009) Zbl1185.54037MR2568327DOI10.1016/j.amc.2009.04.085
- Al-Thagafi, M. A., Shahzad, N., 10.1007/s10114-007-5598-x, Acta Math. Sin., Engl. Ser. 24 (2008), 867-876. (2008) Zbl1175.41026MR2403120DOI10.1007/s10114-007-5598-x
- Altun, I., Romaguera, S., 10.2298/AADM120322009A, Appl. Anal. Discrete Math. 6 (2012), 247-256. (2012) Zbl1289.54112MR3012674DOI10.2298/AADM120322009A
- Altun, I., Simsek, H., Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. 1 (2008), 1-8. (2008) Zbl1172.54318MR2498882
- Aydi, H., Abbas, M., Vetro, C., 10.1016/j.topol.2012.06.012, Topology Appl. 159 (2012), 3234-3242. (2012) Zbl1252.54027MR2948281DOI10.1016/j.topol.2012.06.012
- Aydi, H., Felhi, A., Sahmim, S., 10.3336/gm.52.1.11, Glas. Mat., III. Ser. 52 (2017), 147-161 9999DOI99999 10.3336/gm.52.1.11 . (2017) Zbl06826012MR3662609DOI10.3336/gm.52.1.11
- Aydi, H., Felhi, A., Sahmim, S., 10.2298/FIL1712727A, Filomat 31 (2017), 3727-3740. (2017) Zbl07418388MR3703868DOI10.2298/FIL1712727A
- Bouhadjera, H., Djoudi, A., General common fixed point theorems for weakly compatible maps, Gen. Math. 16 (2008), 95-107. (2008) Zbl1235.54025MR2439229
- Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H., 10.4169/193009709X460831, Am. Math. Mon. 116 (2009), 708-718. (2009) Zbl1229.54037MR2572106DOI10.4169/193009709X460831
- Ćirić, L., Samet, B., Aydi, H., Vetro, C., 10.1016/j.amc.2011.07.005, Appl. Math. Comput. 218 (2011), 2398-2406. (2011) Zbl1244.54090MR2838150DOI10.1016/j.amc.2011.07.005
- Haghi, R. H., Rezapour, S., Shahzad, N., 10.1016/j.topol.2012.11.004, Topology Appl. 160 (2013), 450-454. (2013) Zbl1267.54044MR3010350DOI10.1016/j.topol.2012.11.004
- Jungck, G., 10.1155/S0161171286000935, Int. J. Math. Math. Sci. 9 (1986), 771-779. (1986) Zbl0613.54029MR0870534DOI10.1155/S0161171286000935
- Kaneko, H., Sessa, S., 10.1155/S0161171289000293, Int. J. Math. Math. Sci. 12 (1989), 257-262. (1989) Zbl0671.54023MR0994907DOI10.1155/S0161171289000293
- Kessy, J., Kumar, S., Kakiko, G., Fixed points for hybrid pair of compatible mappings in partial metric spaces, Adv. Fixed Point Theory 7 (2017), 489-499. (2017) MR3853027
- Kubiak, T., Fixed point theorems for contractive type multivalued mappings, Math. Jap. 30 (1985), 89-101. (1985) Zbl0567.54030MR0828906
- Matthews, S. G., Metric Domains for Completeness: PhD Thesis, University of Warwick, Warwick (1985) .
- Matthews, S. G., 10.1111/j.1749-6632.1994.tb44144.x, Papers on General Topology and Applications Annals of the New York Academy of Sciences 728. New York Academy of Sciences, New York (1994), 183-197. (1994) Zbl0911.54025MR1467773DOI10.1111/j.1749-6632.1994.tb44144.x
- Murthy, P. P., Chang, S. S., Cho, Y. J., Sharma, B. K., Compatible mappings of type and common fixed point theorems, Kyungpook Math. J. 32 (1992), 203-216 9999MR99999 1203935 . (1992) Zbl0771.54039MR1203935
- S. B. Nadler, Jr., Multi-valued contraction mappings, Pac. J. Math. 30 (1969), 475-488 9999DOI99999 10.2140/pjm.1969.30.475 . (1969) Zbl0187.45002MR0254828
- Pathak, H. K., Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta Math. Hung. 67 (1995), 69-78 9999DOI99999 10.1007/BF01874520 . (1995) Zbl0821.54027MR1316710
- Pathak, H. K., Khan, M. S., A comparison of various types of compatible maps and common fixed points, Indian J. Pure Appl. Math. 28 (1997), 477-485. (1997) Zbl0872.54033MR1448037
- Sessa, S., On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., Nouv. Sér. 32 (1982), 149-153. (1982) Zbl0523.54030MR0710984
- Smithson, R. E., Fixed points for contractive multifunctions, Proc. Am. Math. Soc. 27 (1971), 192-194 9999DOI99999 10.1090/S0002-9939-1971-0267564-4 . (1971) Zbl0213.24501MR0267564
- Vetro, C., Vetro, F., 10.22436/jnsa.006.03.01, J. Nonlinear Sci. Appl. 6 (2013), 152-161. (2013) Zbl1432.54086MR3010868DOI10.22436/jnsa.006.03.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.