Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces

Santosh Kumar; Johnson Allen Kessy

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 2, page 223-236
  • ISSN: 0862-7959

Abstract

top
The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.

How to cite

top

Kumar, Santosh, and Kessy, Johnson Allen. "Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces." Mathematica Bohemica 148.2 (2023): 223-236. <http://eudml.org/doc/299388>.

@article{Kumar2023,
abstract = {The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.},
author = {Kumar, Santosh, Kessy, Johnson Allen},
journal = {Mathematica Bohemica},
keywords = {partial metric space; weak compatible mapping; hybrid pair of mapping},
language = {eng},
number = {2},
pages = {223-236},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces},
url = {http://eudml.org/doc/299388},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Kumar, Santosh
AU - Kessy, Johnson Allen
TI - Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 2
SP - 223
EP - 236
AB - The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.
LA - eng
KW - partial metric space; weak compatible mapping; hybrid pair of mapping
UR - http://eudml.org/doc/299388
ER -

References

top
  1. Abbas, M., Rhoades, B. E., 10.1016/j.amc.2009.04.085, Appl. Math. Comput. 215 (2009), 262-269. (2009) Zbl1185.54037MR2568327DOI10.1016/j.amc.2009.04.085
  2. Al-Thagafi, M. A., Shahzad, N., 10.1007/s10114-007-5598-x, Acta Math. Sin., Engl. Ser. 24 (2008), 867-876. (2008) Zbl1175.41026MR2403120DOI10.1007/s10114-007-5598-x
  3. Altun, I., Romaguera, S., 10.2298/AADM120322009A, Appl. Anal. Discrete Math. 6 (2012), 247-256. (2012) Zbl1289.54112MR3012674DOI10.2298/AADM120322009A
  4. Altun, I., Simsek, H., Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. 1 (2008), 1-8. (2008) Zbl1172.54318MR2498882
  5. Aydi, H., Abbas, M., Vetro, C., 10.1016/j.topol.2012.06.012, Topology Appl. 159 (2012), 3234-3242. (2012) Zbl1252.54027MR2948281DOI10.1016/j.topol.2012.06.012
  6. Aydi, H., Felhi, A., Sahmim, S., 10.3336/gm.52.1.11, Glas. Mat., III. Ser. 52 (2017), 147-161 9999DOI99999 10.3336/gm.52.1.11 . (2017) Zbl06826012MR3662609DOI10.3336/gm.52.1.11
  7. Aydi, H., Felhi, A., Sahmim, S., 10.2298/FIL1712727A, Filomat 31 (2017), 3727-3740. (2017) Zbl07418388MR3703868DOI10.2298/FIL1712727A
  8. Bouhadjera, H., Djoudi, A., General common fixed point theorems for weakly compatible maps, Gen. Math. 16 (2008), 95-107. (2008) Zbl1235.54025MR2439229
  9. Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H., 10.4169/193009709X460831, Am. Math. Mon. 116 (2009), 708-718. (2009) Zbl1229.54037MR2572106DOI10.4169/193009709X460831
  10. Ćirić, L., Samet, B., Aydi, H., Vetro, C., 10.1016/j.amc.2011.07.005, Appl. Math. Comput. 218 (2011), 2398-2406. (2011) Zbl1244.54090MR2838150DOI10.1016/j.amc.2011.07.005
  11. Haghi, R. H., Rezapour, S., Shahzad, N., 10.1016/j.topol.2012.11.004, Topology Appl. 160 (2013), 450-454. (2013) Zbl1267.54044MR3010350DOI10.1016/j.topol.2012.11.004
  12. Jungck, G., 10.1155/S0161171286000935, Int. J. Math. Math. Sci. 9 (1986), 771-779. (1986) Zbl0613.54029MR0870534DOI10.1155/S0161171286000935
  13. Kaneko, H., Sessa, S., 10.1155/S0161171289000293, Int. J. Math. Math. Sci. 12 (1989), 257-262. (1989) Zbl0671.54023MR0994907DOI10.1155/S0161171289000293
  14. Kessy, J., Kumar, S., Kakiko, G., Fixed points for hybrid pair of compatible mappings in partial metric spaces, Adv. Fixed Point Theory 7 (2017), 489-499. (2017) MR3853027
  15. Kubiak, T., Fixed point theorems for contractive type multivalued mappings, Math. Jap. 30 (1985), 89-101. (1985) Zbl0567.54030MR0828906
  16. Matthews, S. G., Metric Domains for Completeness: PhD Thesis, University of Warwick, Warwick (1985) . 
  17. Matthews, S. G., 10.1111/j.1749-6632.1994.tb44144.x, Papers on General Topology and Applications Annals of the New York Academy of Sciences 728. New York Academy of Sciences, New York (1994), 183-197. (1994) Zbl0911.54025MR1467773DOI10.1111/j.1749-6632.1994.tb44144.x
  18. Murthy, P. P., Chang, S. S., Cho, Y. J., Sharma, B. K., Compatible mappings of type ( A ) and common fixed point theorems, Kyungpook Math. J. 32 (1992), 203-216 9999MR99999 1203935 . (1992) Zbl0771.54039MR1203935
  19. S. B. Nadler, Jr., Multi-valued contraction mappings, Pac. J. Math. 30 (1969), 475-488 9999DOI99999 10.2140/pjm.1969.30.475 . (1969) Zbl0187.45002MR0254828
  20. Pathak, H. K., Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta Math. Hung. 67 (1995), 69-78 9999DOI99999 10.1007/BF01874520 . (1995) Zbl0821.54027MR1316710
  21. Pathak, H. K., Khan, M. S., A comparison of various types of compatible maps and common fixed points, Indian J. Pure Appl. Math. 28 (1997), 477-485. (1997) Zbl0872.54033MR1448037
  22. Sessa, S., On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., Nouv. Sér. 32 (1982), 149-153. (1982) Zbl0523.54030MR0710984
  23. Smithson, R. E., Fixed points for contractive multifunctions, Proc. Am. Math. Soc. 27 (1971), 192-194 9999DOI99999 10.1090/S0002-9939-1971-0267564-4 . (1971) Zbl0213.24501MR0267564
  24. Vetro, C., Vetro, F., 10.22436/jnsa.006.03.01, J. Nonlinear Sci. Appl. 6 (2013), 152-161. (2013) Zbl1432.54086MR3010868DOI10.22436/jnsa.006.03.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.