-basic construction between non-balanced quantum doubles
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 611-621
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXin, Qiaoling, and Cao, Tianqing. "$C^*$-basic construction between non-balanced quantum doubles." Czechoslovak Mathematical Journal 74.2 (2024): 611-621. <http://eudml.org/doc/299392>.
@article{Xin2024,
abstract = {For finite groups $X$, $G$ and the right $G$-action on $X$ by group automorphisms, the non-balanced quantum double $D(X;G)$ is defined as the crossed product $(\mathbb \{C\}X^\{\rm op\})^*\rtimes \mathbb \{C\}G$. We firstly prove that $D(X;G)$ is a finite-dimensional Hopf $C^*$-algebra. For any subgroup $H$ of $G$, $D(X;H)$ can be defined as a Hopf $C^*$-subalgebra of $D(X;G)$ in the natural way. Then there is a conditonal expectation from $D(X;G)$ onto $D(X;H)$ and the index is $[G;H]$. Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the group algebra.},
author = {Xin, Qiaoling, Cao, Tianqing},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-balanced quantum double; $C^*$-basic construction; crossed product; action},
language = {eng},
number = {2},
pages = {611-621},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$C^*$-basic construction between non-balanced quantum doubles},
url = {http://eudml.org/doc/299392},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Xin, Qiaoling
AU - Cao, Tianqing
TI - $C^*$-basic construction between non-balanced quantum doubles
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 611
EP - 621
AB - For finite groups $X$, $G$ and the right $G$-action on $X$ by group automorphisms, the non-balanced quantum double $D(X;G)$ is defined as the crossed product $(\mathbb {C}X^{\rm op})^*\rtimes \mathbb {C}G$. We firstly prove that $D(X;G)$ is a finite-dimensional Hopf $C^*$-algebra. For any subgroup $H$ of $G$, $D(X;H)$ can be defined as a Hopf $C^*$-subalgebra of $D(X;G)$ in the natural way. Then there is a conditonal expectation from $D(X;G)$ onto $D(X;H)$ and the index is $[G;H]$. Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the group algebra.
LA - eng
KW - non-balanced quantum double; $C^*$-basic construction; crossed product; action
UR - http://eudml.org/doc/299392
ER -
References
top- Bratteli, O., Robinson, D. W., 10.1007/978-3-662-02520-8, Texts and Monographs in Physics. Springer, New York (1987). (1987) Zbl0905.46046MR0887100DOI10.1007/978-3-662-02520-8
- Cao, T., Xin, Q., Wei, X., Jiang, L., 10.3390/math8091547, Mathematics 8 (2020), Article ID 1547, 9 pages. (2020) DOI10.3390/math8091547
- Chen, L., Li, F., 10.1007/s11766-012-2852-5, Appl. Math., Ser. B (Engl. Ed.) 27 (2012), 475-488. (2012) Zbl1289.16049MR3001093DOI10.1007/s11766-012-2852-5
- De, S., Kodiyalam, V., 10.1016/j.jpaa.2015.05.013, J. Pure Appl. Algerba 219 (2015), 5305-5313. (2015) Zbl1325.16028MR3390022DOI10.1016/j.jpaa.2015.05.013
- Drinfel'd, V. G., Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 AMS, Providence (1987), 798-820. (1987) Zbl0667.16003MR0934283
- Hiai, F., 10.2977/PRIMS/1195174872, Publ. Res. Inst. Math. Sci. 24 (1988), 673-678. (1988) Zbl0679.46050MR0976765DOI10.2977/PRIMS/1195174872
- Jiang, L., 10.1360/03ys0119, Sci. China, Ser. A 48 (2005), 57-66. (2005) Zbl1177.82024MR2156615DOI10.1360/03ys0119
- Jiang, L., Zhu, G., -index in double algebra of finite group, Trans. Beijing Inst. Technol. 23 (2003), 147-148 Chinese. (2003) Zbl1084.46044MR1976172
- Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155. Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
- Kawahigashi, Y., Longo, R., 10.4007/annals.2004.160.493, Ann. Math. (2) 160 (2004), 493-522. (2004) Zbl1083.46038MR2123931DOI10.4007/annals.2004.160.493
- Kosaki, H., 10.1016/0022-1236(86)90085-6, J. Funct. Anal. 66 (1986), 123-140. (1986) Zbl0607.46034MR0829381DOI10.1016/0022-1236(86)90085-6
- Loi, P. H., Sur la théorie de l'indice et les facteurs de type III, C. R. Acad. Sci., Paris, Sér. 305 (1987), 423-426 French. (1987) Zbl0622.46042MR0916344
- Longo, R., 10.1007/BF02473354, Commun. Math. Phys. 130 (1990), 285-309. (1990) Zbl0705.46038MR1059320DOI10.1007/BF02473354
- Montgomery, S., 10.1090/cbms/082, Regional Conference Series in Mathematics 82. AMS, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
- Murphy, G. J., 10.1016/c2009-0-22289-6, Academic Press, Boston (1990). (1990) Zbl0714.46041MR1074574DOI10.1016/c2009-0-22289-6
- Pimsner, M., Popa, S., 10.24033/asens.1504, Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 57-106. (1986) Zbl0646.46057MR0860811DOI10.24033/asens.1504
- Radford, D. E., 10.1006/jabr.1993.1102, J. Algebra 157 (1993), 285-315. (1993) Zbl0787.16028MR1220770DOI10.1006/jabr.1993.1102
- Sweedler, M. E., Hopf Algebras, W. A. Benjamin, New York (1969). (1969) Zbl0194.32901MR0252485
- Vaes, S., Daele, A. Van, 10.1112/S002461150101276X, Proc. Lond. Math. Soc., III. Ser. 82 (2001), 337-384. (2001) Zbl1028.46100MR1806875DOI10.1112/S002461150101276X
- Watatani, Y., 10.1090/memo/0424, Mem. Am. Math. Soc. 424 (1990), 117 pages. (1990) Zbl0697.46024MR0996807DOI10.1090/memo/0424
- Xin, Q., Jiang, L., 10.1063/1.4896327, J. Math. Phys. 55 (2014), Article ID 091703, 9 pages. (2014) Zbl1442.81056MR3390774DOI10.1063/1.4896327
- Xin, Q., Jiang, L., Cao, T., 10.1155/2019/2041079, J. Funct. Spaces 2019 (2019), Article ID 2041079, 7 pages. (2019) Zbl1436.46051MR3976604DOI10.1155/2019/2041079
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.