C * -basic construction between non-balanced quantum doubles

Qiaoling Xin; Tianqing Cao

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 611-621
  • ISSN: 0011-4642

Abstract

top
For finite groups X , G and the right G -action on X by group automorphisms, the non-balanced quantum double D ( X ; G ) is defined as the crossed product ( X op ) * G . We firstly prove that D ( X ; G ) is a finite-dimensional Hopf C * -algebra. For any subgroup H of G , D ( X ; H ) can be defined as a Hopf C * -subalgebra of D ( X ; G ) in the natural way. Then there is a conditonal expectation from D ( X ; G ) onto D ( X ; H ) and the index is [ G ; H ] . Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the group algebra.

How to cite

top

Xin, Qiaoling, and Cao, Tianqing. "$C^*$-basic construction between non-balanced quantum doubles." Czechoslovak Mathematical Journal 74.2 (2024): 611-621. <http://eudml.org/doc/299392>.

@article{Xin2024,
abstract = {For finite groups $X$, $G$ and the right $G$-action on $X$ by group automorphisms, the non-balanced quantum double $D(X;G)$ is defined as the crossed product $(\mathbb \{C\}X^\{\rm op\})^*\rtimes \mathbb \{C\}G$. We firstly prove that $D(X;G)$ is a finite-dimensional Hopf $C^*$-algebra. For any subgroup $H$ of $G$, $D(X;H)$ can be defined as a Hopf $C^*$-subalgebra of $D(X;G)$ in the natural way. Then there is a conditonal expectation from $D(X;G)$ onto $D(X;H)$ and the index is $[G;H]$. Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the group algebra.},
author = {Xin, Qiaoling, Cao, Tianqing},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-balanced quantum double; $C^*$-basic construction; crossed product; action},
language = {eng},
number = {2},
pages = {611-621},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$C^*$-basic construction between non-balanced quantum doubles},
url = {http://eudml.org/doc/299392},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Xin, Qiaoling
AU - Cao, Tianqing
TI - $C^*$-basic construction between non-balanced quantum doubles
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 611
EP - 621
AB - For finite groups $X$, $G$ and the right $G$-action on $X$ by group automorphisms, the non-balanced quantum double $D(X;G)$ is defined as the crossed product $(\mathbb {C}X^{\rm op})^*\rtimes \mathbb {C}G$. We firstly prove that $D(X;G)$ is a finite-dimensional Hopf $C^*$-algebra. For any subgroup $H$ of $G$, $D(X;H)$ can be defined as a Hopf $C^*$-subalgebra of $D(X;G)$ in the natural way. Then there is a conditonal expectation from $D(X;G)$ onto $D(X;H)$ and the index is $[G;H]$. Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the group algebra.
LA - eng
KW - non-balanced quantum double; $C^*$-basic construction; crossed product; action
UR - http://eudml.org/doc/299392
ER -

References

top
  1. Bratteli, O., Robinson, D. W., 10.1007/978-3-662-02520-8, Texts and Monographs in Physics. Springer, New York (1987). (1987) Zbl0905.46046MR0887100DOI10.1007/978-3-662-02520-8
  2. Cao, T., Xin, Q., Wei, X., Jiang, L., 10.3390/math8091547, Mathematics 8 (2020), Article ID 1547, 9 pages. (2020) DOI10.3390/math8091547
  3. Chen, L., Li, F., 10.1007/s11766-012-2852-5, Appl. Math., Ser. B (Engl. Ed.) 27 (2012), 475-488. (2012) Zbl1289.16049MR3001093DOI10.1007/s11766-012-2852-5
  4. De, S., Kodiyalam, V., 10.1016/j.jpaa.2015.05.013, J. Pure Appl. Algerba 219 (2015), 5305-5313. (2015) Zbl1325.16028MR3390022DOI10.1016/j.jpaa.2015.05.013
  5. Drinfel'd, V. G., Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 AMS, Providence (1987), 798-820. (1987) Zbl0667.16003MR0934283
  6. Hiai, F., 10.2977/PRIMS/1195174872, Publ. Res. Inst. Math. Sci. 24 (1988), 673-678. (1988) Zbl0679.46050MR0976765DOI10.2977/PRIMS/1195174872
  7. Jiang, L., 10.1360/03ys0119, Sci. China, Ser. A 48 (2005), 57-66. (2005) Zbl1177.82024MR2156615DOI10.1360/03ys0119
  8. Jiang, L., Zhu, G., C * -index in double algebra of finite group, Trans. Beijing Inst. Technol. 23 (2003), 147-148 Chinese. (2003) Zbl1084.46044MR1976172
  9. Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155. Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
  10. Kawahigashi, Y., Longo, R., 10.4007/annals.2004.160.493, Ann. Math. (2) 160 (2004), 493-522. (2004) Zbl1083.46038MR2123931DOI10.4007/annals.2004.160.493
  11. Kosaki, H., 10.1016/0022-1236(86)90085-6, J. Funct. Anal. 66 (1986), 123-140. (1986) Zbl0607.46034MR0829381DOI10.1016/0022-1236(86)90085-6
  12. Loi, P. H., Sur la théorie de l'indice et les facteurs de type III, C. R. Acad. Sci., Paris, Sér. 305 (1987), 423-426 French. (1987) Zbl0622.46042MR0916344
  13. Longo, R., 10.1007/BF02473354, Commun. Math. Phys. 130 (1990), 285-309. (1990) Zbl0705.46038MR1059320DOI10.1007/BF02473354
  14. Montgomery, S., 10.1090/cbms/082, Regional Conference Series in Mathematics 82. AMS, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
  15. Murphy, G. J., 10.1016/c2009-0-22289-6, Academic Press, Boston (1990). (1990) Zbl0714.46041MR1074574DOI10.1016/c2009-0-22289-6
  16. Pimsner, M., Popa, S., 10.24033/asens.1504, Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 57-106. (1986) Zbl0646.46057MR0860811DOI10.24033/asens.1504
  17. Radford, D. E., 10.1006/jabr.1993.1102, J. Algebra 157 (1993), 285-315. (1993) Zbl0787.16028MR1220770DOI10.1006/jabr.1993.1102
  18. Sweedler, M. E., Hopf Algebras, W. A. Benjamin, New York (1969). (1969) Zbl0194.32901MR0252485
  19. Vaes, S., Daele, A. Van, 10.1112/S002461150101276X, Proc. Lond. Math. Soc., III. Ser. 82 (2001), 337-384. (2001) Zbl1028.46100MR1806875DOI10.1112/S002461150101276X
  20. Watatani, Y., 10.1090/memo/0424, Mem. Am. Math. Soc. 424 (1990), 117 pages. (1990) Zbl0697.46024MR0996807DOI10.1090/memo/0424
  21. Xin, Q., Jiang, L., 10.1063/1.4896327, J. Math. Phys. 55 (2014), Article ID 091703, 9 pages. (2014) Zbl1442.81056MR3390774DOI10.1063/1.4896327
  22. Xin, Q., Jiang, L., Cao, T., 10.1155/2019/2041079, J. Funct. Spaces 2019 (2019), Article ID 2041079, 7 pages. (2019) Zbl1436.46051MR3976604DOI10.1155/2019/2041079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.