A dual-parameter double-step splitting iteration method for solving complex symmetric linear equations
Beibei Li; Jingjing Cui; Zhengge Huang; Xiaofeng Xie
Applications of Mathematics (2024)
- Volume: 69, Issue: 3, page 311-337
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLi, Beibei, et al. "A dual-parameter double-step splitting iteration method for solving complex symmetric linear equations." Applications of Mathematics 69.3 (2024): 311-337. <http://eudml.org/doc/299394>.
@article{Li2024,
abstract = {We multiply both sides of the complex symmetric linear system $Ax=b$ by $1-\{\rm i\}\omega $ to obtain a new equivalent linear system, then a dual-parameter double-step splitting (DDSS) method is established for solving the new linear system. In addition, we present an upper bound for the spectral radius of iteration matrix of the DDSS method and obtain its quasi-optimal parameter. Theoretical analyses demonstrate that the new method is convergent when some conditions are satisfied. Some tested examples are given to illustrate the effectiveness of the proposed method.},
author = {Li, Beibei, Cui, Jingjing, Huang, Zhengge, Xie, Xiaofeng},
journal = {Applications of Mathematics},
keywords = {DDSS iteration method; linear equations; SPD matrix; SPSD matrix; convergence property},
language = {eng},
number = {3},
pages = {311-337},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A dual-parameter double-step splitting iteration method for solving complex symmetric linear equations},
url = {http://eudml.org/doc/299394},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Li, Beibei
AU - Cui, Jingjing
AU - Huang, Zhengge
AU - Xie, Xiaofeng
TI - A dual-parameter double-step splitting iteration method for solving complex symmetric linear equations
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 311
EP - 337
AB - We multiply both sides of the complex symmetric linear system $Ax=b$ by $1-{\rm i}\omega $ to obtain a new equivalent linear system, then a dual-parameter double-step splitting (DDSS) method is established for solving the new linear system. In addition, we present an upper bound for the spectral radius of iteration matrix of the DDSS method and obtain its quasi-optimal parameter. Theoretical analyses demonstrate that the new method is convergent when some conditions are satisfied. Some tested examples are given to illustrate the effectiveness of the proposed method.
LA - eng
KW - DDSS iteration method; linear equations; SPD matrix; SPSD matrix; convergence property
UR - http://eudml.org/doc/299394
ER -
References
top- Arridge, S. R., 10.1088/0266-5611/15/2/022, Inverse Probl. 15 (1999), R41--R93. (1999) Zbl0926.35155MR1684463DOI10.1088/0266-5611/15/2/022
- Axelsson, O., Kucherov, A., 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S, Numer. Linear Algebra Appl. 7 (2000), 197-218. (2000) Zbl1051.65025MR1762967DOI10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
- Bai, Z.-Z., 10.1016/S0096-3003(99)00027-2, Appl. Math. Comput. 109 (2000), 273-285. (2000) Zbl1026.65028MR1738197DOI10.1016/S0096-3003(99)00027-2
- Bai, Z.-Z., 10.1016/j.cam.2015.01.025, J. Comput. Appl. Math. 283 (2015), 71-78. (2015) Zbl1311.65032MR3317271DOI10.1016/j.cam.2015.01.025
- Bai, Z.-Z., 10.1002/nla.2116, Numer. Linear Algebra Appl. 25 (2018), Article ID e2116, 19 pages. (2018) Zbl1513.65063MR3826931DOI10.1002/nla.2116
- Bai, Z.-Z., Benzi, M., Chen, F., 10.1007/s00607-010-0077-0, Computing 87 (2010), 93-111. (2010) Zbl1210.65074MR2640009DOI10.1007/s00607-010-0077-0
- Bai, Z.-Z., Benzi, M., Chen, F., 10.1007/s11075-010-9441-6, Numer. Algorithms 56 (2011), 297-317. (2011) Zbl1209.65037MR2755673DOI10.1007/s11075-010-9441-6
- Bai, Z.-Z., Golub, G. H., 10.1093/imanum/drl017, IMA J. Numer. Anal. 27 (2007), 1-23. (2007) Zbl1134.65022MR2289269DOI10.1093/imanum/drl017
- Bai, Z.-Z., Golub, G. H., Ng, M. K., 10.1137/S0895479801395458, SIAM J. Matrix Anal. Appl. 24 (2003), 603-626. (2003) Zbl1036.65032MR1972670DOI10.1137/S0895479801395458
- Bai, Z.-Z., Golub, G. H., Pan, J.-Y., 10.1007/s00211-004-0521-1, Numer. Math. 98 (2004), 1-32. (2004) Zbl1056.65025MR2076052DOI10.1007/s00211-004-0521-1
- Bai, Z.-Z., Pan, J.-Y., 10.1137/1.9781611976632, Other Titles in Applied Mathematics 173. SIAM, Philadelphia (2021). (2021) Zbl07417710MR4362581DOI10.1137/1.9781611976632
- Benzi, M., Bertaccini, D., 10.1093/imanum/drm039, IMA J. Numer. Anal. 28 (2008), 598-618. (2008) Zbl1145.65022MR2433214DOI10.1093/imanum/drm039
- Bertaccini, D., Efficient preconditioning for sequences of parametric complex symmetric linear systems, ETNA, Electron. Trans. Numer. Anal. 18 (2004), 49-64. (2004) Zbl1066.65048MR2083294
- Chen, F., Li, T.-Y., Lu, K.-Y., Muratova, G. V., 10.1016/j.apnum.2020.01.018, Appl. Numer. Math. 164 (2021), 3-14. (2021) Zbl1460.65033MR4207970DOI10.1016/j.apnum.2020.01.018
- Dehghan, M., Dehghani-Madiseh, M., Hajarian, M., 10.3846/13926292.2013.839964, Math. Model. Anal. 18 (2013), 561-576. (2013) Zbl1281.65058MR3175665DOI10.3846/13926292.2013.839964
- Feriani, A., Perotti, F., Simoncini, V., 10.1016/S0045-7825(00)00187-0, Comput. Methods Appl. Mech. Eng. 190 (2000), 1719-1739. (2000) Zbl0981.70005DOI10.1016/S0045-7825(00)00187-0
- Frommer, A., Lippert, T., Medeke, B., (Eds.), K. Schilling, 10.1007/978-3-642-58333-9, Lecture Notes in Computational Science and Engineering 15. Springer, Berlin (2000). (2000) Zbl0957.00052MR1861777DOI10.1007/978-3-642-58333-9
- Huang, Y., Chen, G., 10.1515/math-2018-0051, Open Math. 16 (2018), 561-573. (2018) Zbl1388.65033MR3812172DOI10.1515/math-2018-0051
- Huang, Z.-G., 10.1007/s40314-020-01220-9, Comput. Appl. Math. 39 (2020), Article ID 193, 42 pages. (2020) Zbl1463.65047MR4116897DOI10.1007/s40314-020-01220-9
- Huang, Z.-G., 10.1016/j.cam.2021.113574, J. Comput. Appl. Math. 395 (2021), Article ID 113574, 21 pages. (2021) Zbl1470.65054MR4246150DOI10.1016/j.cam.2021.113574
- Huang, Z.-G., 10.1007/s40314-021-01514-6, Comput. Appl. Math. 40 (2021), Article ID 122, 35 pages. (2021) Zbl1476.65041MR4248586DOI10.1007/s40314-021-01514-6
- Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J., 10.1016/j.camwa.2018.11.024, Comput. Math. Appl. 77 (2019), 1902-1916. (2019) Zbl1442.65041MR3926852DOI10.1016/j.camwa.2018.11.024
- Li, B., Cui, J., Huang, Z., Xie, X., 10.1007/s40314-022-01942-y, Comput. Appl. Math. 41 (2022), Article ID 250, 23 pages. (2022) Zbl1513.65076MR4455168DOI10.1007/s40314-022-01942-y
- Li, C.-X., Wu, S.-L., 10.1016/j.aml.2014.12.013, Appl. Math. Lett. 44 (2015), 26-29. (2015) Zbl1315.65032MR3311417DOI10.1016/j.aml.2014.12.013
- Li, L., Huang, T.-Z., Liu, X.-P., 10.1002/nla.528, Numer. Linear Algebra Appl. 14 (2007), 217-235. (2007) Zbl1199.65109MR2301913DOI10.1002/nla.528
- Li, X., Yang, A.-L., Wu, Y.-J., 10.1007/s11075-013-9748-1, Numer. Algorithms 66 (2014), 555-568. (2014) Zbl1298.65058MR3225002DOI10.1007/s11075-013-9748-1
- Pour, H. Noormohammadi, Goughery, H. Sadeghi, 10.1007/s11075-014-9890-4, Numer. Algorithms 69 (2015), 207-225. (2015) Zbl1317.65091MR3339219DOI10.1007/s11075-014-9890-4
- Poirier, B., 10.1002/1099-1506(200010/12)7:7/8<715::AID-NLA220>3.0.CO;2-R, Numer. Linear Algebra Appl. 7 (2000), 715-726. (2000) Zbl1051.65059MR1802367DOI10.1002/1099-1506(200010/12)7:7/8<715::AID-NLA220>3.0.CO;2-R
- Shirilord, A., Dehghan, M., 10.1016/j.amc.2022.127111, Appl. Math. Comput. 426 (2022), Article ID 127111, 17 pages. (2022) Zbl1511.65055MR4408297DOI10.1016/j.amc.2022.127111
- Siahkoalaei, T. S., Salkuyeh, D. K., 10.15672/hujms.494876, Hacet. J. Math. Stat. 49 (2020), 1245-1260. (2020) Zbl1478.65102MR4199075DOI10.15672/hujms.494876
- Dijk, W. van, Toyama, F. M., 10.1103/PhysRevE.75.036707, Phys. Rev. E 75 (2007), Article ID 036707, 10 pages. (2007) MR2358574DOI10.1103/PhysRevE.75.036707
- Wang, T., Zheng, Q., Lu, L., 10.1016/j.cam.2017.05.002, J. Comput. Appl. Math. 325 (2017), 188-197. (2017) Zbl1365.65087MR3658905DOI10.1016/j.cam.2017.05.002
- Wu, S.-L., 10.1002/nla.1952, Numer. Linear Algebra Appl. 22 (2015), 338-356. (2015) Zbl1363.65055MR3313262DOI10.1002/nla.1952
- Xiao, X.-Y., Wang, X., Yin, H.-W., 10.1016/j.camwa.2017.07.007, Comput. Math. Appl. 74 (2017), 2269-2280. (2017) Zbl1398.65053MR3718115DOI10.1016/j.camwa.2017.07.007
- Xiao, X.-Y., Wang, X., Yin, H.-W., 10.1016/j.camwa.2017.09.004, Comput. Math. Appl. 75 (2018), 235-247. (2018) Zbl1478.65023MR3758701DOI10.1016/j.camwa.2017.09.004
- Yang, A.-L., 10.1016/j.aml.2019.02.031, Appl. Math. Lett. 94 (2019), 210-216. (2019) Zbl1411.65055MR3924568DOI10.1016/j.aml.2019.02.031
- Yang, A.-L., Cao, Y., Wu, Y.-J., 10.1007/s10543-018-0729-6, BIT 59 (2019), 299-319. (2019) Zbl1432.65033MR3921381DOI10.1007/s10543-018-0729-6
- Zeng, M.-L., Inexact modified QHSS iteration methods for complex symmetric linear systems of strong skew-Hermitian parts, IAENG, Int. J. Appl. Math. 51 (2021), 109-115. (2021)
- Zhang, J., Dai, H., 10.1016/j.aml.2015.05.006, Appl. Math. Lett. 49 (2015), 100-106. (2015) Zbl1382.65083MR3361702DOI10.1016/j.aml.2015.05.006
- Zhang, J.-H., Dai, H., 10.1007/s11075-016-0175-y, Numer. Algorithms 74 (2017), 889-903. (2017) Zbl1366.65049MR3611559DOI10.1007/s11075-016-0175-y
- Zhang, J., Wang, Z., Zhao, J., 10.1016/j.amc.2019.02.020, Appl. Math. Comput. 353 (2019), 338-346. (2019) Zbl1429.65073MR3916000DOI10.1016/j.amc.2019.02.020
- Zhang, J.-L., Fan, H.-T., Gu, C.-Q., 10.1007/s11075-017-0323-z, Numer. Algorithms 77 (2018), 451-478. (2018) Zbl1388.65031MR3748379DOI10.1007/s11075-017-0323-z
- Zhang, W.-H., Yang, A.-L., Wu, Y.-J., 10.1007/s11075-020-00944-3, Numer. Algorithms 86 (2021), 1543-1559. (2021) Zbl1470.65057MR4229637DOI10.1007/s11075-020-00944-3
- Zheng, Z., Huang, F.-L., Peng, Y.-C., 10.1016/j.aml.2017.04.017, Appl. Math. Lett. 73 (2017), 91-97. (2017) Zbl1375.65056MR3659913DOI10.1016/j.aml.2017.04.017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.