A dual-parameter double-step splitting iteration method for solving complex symmetric linear equations

Beibei Li; Jingjing Cui; Zhengge Huang; Xiaofeng Xie

Applications of Mathematics (2024)

  • Volume: 69, Issue: 3, page 311-337
  • ISSN: 0862-7940

Abstract

top
We multiply both sides of the complex symmetric linear system A x = b by 1 - i ω to obtain a new equivalent linear system, then a dual-parameter double-step splitting (DDSS) method is established for solving the new linear system. In addition, we present an upper bound for the spectral radius of iteration matrix of the DDSS method and obtain its quasi-optimal parameter. Theoretical analyses demonstrate that the new method is convergent when some conditions are satisfied. Some tested examples are given to illustrate the effectiveness of the proposed method.

How to cite

top

Li, Beibei, et al. "A dual-parameter double-step splitting iteration method for solving complex symmetric linear equations." Applications of Mathematics 69.3 (2024): 311-337. <http://eudml.org/doc/299394>.

@article{Li2024,
abstract = {We multiply both sides of the complex symmetric linear system $Ax=b$ by $1-\{\rm i\}\omega $ to obtain a new equivalent linear system, then a dual-parameter double-step splitting (DDSS) method is established for solving the new linear system. In addition, we present an upper bound for the spectral radius of iteration matrix of the DDSS method and obtain its quasi-optimal parameter. Theoretical analyses demonstrate that the new method is convergent when some conditions are satisfied. Some tested examples are given to illustrate the effectiveness of the proposed method.},
author = {Li, Beibei, Cui, Jingjing, Huang, Zhengge, Xie, Xiaofeng},
journal = {Applications of Mathematics},
keywords = {DDSS iteration method; linear equations; SPD matrix; SPSD matrix; convergence property},
language = {eng},
number = {3},
pages = {311-337},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A dual-parameter double-step splitting iteration method for solving complex symmetric linear equations},
url = {http://eudml.org/doc/299394},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Li, Beibei
AU - Cui, Jingjing
AU - Huang, Zhengge
AU - Xie, Xiaofeng
TI - A dual-parameter double-step splitting iteration method for solving complex symmetric linear equations
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 311
EP - 337
AB - We multiply both sides of the complex symmetric linear system $Ax=b$ by $1-{\rm i}\omega $ to obtain a new equivalent linear system, then a dual-parameter double-step splitting (DDSS) method is established for solving the new linear system. In addition, we present an upper bound for the spectral radius of iteration matrix of the DDSS method and obtain its quasi-optimal parameter. Theoretical analyses demonstrate that the new method is convergent when some conditions are satisfied. Some tested examples are given to illustrate the effectiveness of the proposed method.
LA - eng
KW - DDSS iteration method; linear equations; SPD matrix; SPSD matrix; convergence property
UR - http://eudml.org/doc/299394
ER -

References

top
  1. Arridge, S. R., 10.1088/0266-5611/15/2/022, Inverse Probl. 15 (1999), R41--R93. (1999) Zbl0926.35155MR1684463DOI10.1088/0266-5611/15/2/022
  2. Axelsson, O., Kucherov, A., 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S, Numer. Linear Algebra Appl. 7 (2000), 197-218. (2000) Zbl1051.65025MR1762967DOI10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
  3. Bai, Z.-Z., 10.1016/S0096-3003(99)00027-2, Appl. Math. Comput. 109 (2000), 273-285. (2000) Zbl1026.65028MR1738197DOI10.1016/S0096-3003(99)00027-2
  4. Bai, Z.-Z., 10.1016/j.cam.2015.01.025, J. Comput. Appl. Math. 283 (2015), 71-78. (2015) Zbl1311.65032MR3317271DOI10.1016/j.cam.2015.01.025
  5. Bai, Z.-Z., 10.1002/nla.2116, Numer. Linear Algebra Appl. 25 (2018), Article ID e2116, 19 pages. (2018) Zbl1513.65063MR3826931DOI10.1002/nla.2116
  6. Bai, Z.-Z., Benzi, M., Chen, F., 10.1007/s00607-010-0077-0, Computing 87 (2010), 93-111. (2010) Zbl1210.65074MR2640009DOI10.1007/s00607-010-0077-0
  7. Bai, Z.-Z., Benzi, M., Chen, F., 10.1007/s11075-010-9441-6, Numer. Algorithms 56 (2011), 297-317. (2011) Zbl1209.65037MR2755673DOI10.1007/s11075-010-9441-6
  8. Bai, Z.-Z., Golub, G. H., 10.1093/imanum/drl017, IMA J. Numer. Anal. 27 (2007), 1-23. (2007) Zbl1134.65022MR2289269DOI10.1093/imanum/drl017
  9. Bai, Z.-Z., Golub, G. H., Ng, M. K., 10.1137/S0895479801395458, SIAM J. Matrix Anal. Appl. 24 (2003), 603-626. (2003) Zbl1036.65032MR1972670DOI10.1137/S0895479801395458
  10. Bai, Z.-Z., Golub, G. H., Pan, J.-Y., 10.1007/s00211-004-0521-1, Numer. Math. 98 (2004), 1-32. (2004) Zbl1056.65025MR2076052DOI10.1007/s00211-004-0521-1
  11. Bai, Z.-Z., Pan, J.-Y., 10.1137/1.9781611976632, Other Titles in Applied Mathematics 173. SIAM, Philadelphia (2021). (2021) Zbl07417710MR4362581DOI10.1137/1.9781611976632
  12. Benzi, M., Bertaccini, D., 10.1093/imanum/drm039, IMA J. Numer. Anal. 28 (2008), 598-618. (2008) Zbl1145.65022MR2433214DOI10.1093/imanum/drm039
  13. Bertaccini, D., Efficient preconditioning for sequences of parametric complex symmetric linear systems, ETNA, Electron. Trans. Numer. Anal. 18 (2004), 49-64. (2004) Zbl1066.65048MR2083294
  14. Chen, F., Li, T.-Y., Lu, K.-Y., Muratova, G. V., 10.1016/j.apnum.2020.01.018, Appl. Numer. Math. 164 (2021), 3-14. (2021) Zbl1460.65033MR4207970DOI10.1016/j.apnum.2020.01.018
  15. Dehghan, M., Dehghani-Madiseh, M., Hajarian, M., 10.3846/13926292.2013.839964, Math. Model. Anal. 18 (2013), 561-576. (2013) Zbl1281.65058MR3175665DOI10.3846/13926292.2013.839964
  16. Feriani, A., Perotti, F., Simoncini, V., 10.1016/S0045-7825(00)00187-0, Comput. Methods Appl. Mech. Eng. 190 (2000), 1719-1739. (2000) Zbl0981.70005DOI10.1016/S0045-7825(00)00187-0
  17. Frommer, A., Lippert, T., Medeke, B., (Eds.), K. Schilling, 10.1007/978-3-642-58333-9, Lecture Notes in Computational Science and Engineering 15. Springer, Berlin (2000). (2000) Zbl0957.00052MR1861777DOI10.1007/978-3-642-58333-9
  18. Huang, Y., Chen, G., 10.1515/math-2018-0051, Open Math. 16 (2018), 561-573. (2018) Zbl1388.65033MR3812172DOI10.1515/math-2018-0051
  19. Huang, Z.-G., 10.1007/s40314-020-01220-9, Comput. Appl. Math. 39 (2020), Article ID 193, 42 pages. (2020) Zbl1463.65047MR4116897DOI10.1007/s40314-020-01220-9
  20. Huang, Z.-G., 10.1016/j.cam.2021.113574, J. Comput. Appl. Math. 395 (2021), Article ID 113574, 21 pages. (2021) Zbl1470.65054MR4246150DOI10.1016/j.cam.2021.113574
  21. Huang, Z.-G., 10.1007/s40314-021-01514-6, Comput. Appl. Math. 40 (2021), Article ID 122, 35 pages. (2021) Zbl1476.65041MR4248586DOI10.1007/s40314-021-01514-6
  22. Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J., 10.1016/j.camwa.2018.11.024, Comput. Math. Appl. 77 (2019), 1902-1916. (2019) Zbl1442.65041MR3926852DOI10.1016/j.camwa.2018.11.024
  23. Li, B., Cui, J., Huang, Z., Xie, X., 10.1007/s40314-022-01942-y, Comput. Appl. Math. 41 (2022), Article ID 250, 23 pages. (2022) Zbl1513.65076MR4455168DOI10.1007/s40314-022-01942-y
  24. Li, C.-X., Wu, S.-L., 10.1016/j.aml.2014.12.013, Appl. Math. Lett. 44 (2015), 26-29. (2015) Zbl1315.65032MR3311417DOI10.1016/j.aml.2014.12.013
  25. Li, L., Huang, T.-Z., Liu, X.-P., 10.1002/nla.528, Numer. Linear Algebra Appl. 14 (2007), 217-235. (2007) Zbl1199.65109MR2301913DOI10.1002/nla.528
  26. Li, X., Yang, A.-L., Wu, Y.-J., 10.1007/s11075-013-9748-1, Numer. Algorithms 66 (2014), 555-568. (2014) Zbl1298.65058MR3225002DOI10.1007/s11075-013-9748-1
  27. Pour, H. Noormohammadi, Goughery, H. Sadeghi, 10.1007/s11075-014-9890-4, Numer. Algorithms 69 (2015), 207-225. (2015) Zbl1317.65091MR3339219DOI10.1007/s11075-014-9890-4
  28. Poirier, B., 10.1002/1099-1506(200010/12)7:7/8<715::AID-NLA220>3.0.CO;2-R, Numer. Linear Algebra Appl. 7 (2000), 715-726. (2000) Zbl1051.65059MR1802367DOI10.1002/1099-1506(200010/12)7:7/8<715::AID-NLA220>3.0.CO;2-R
  29. Shirilord, A., Dehghan, M., 10.1016/j.amc.2022.127111, Appl. Math. Comput. 426 (2022), Article ID 127111, 17 pages. (2022) Zbl1511.65055MR4408297DOI10.1016/j.amc.2022.127111
  30. Siahkoalaei, T. S., Salkuyeh, D. K., 10.15672/hujms.494876, Hacet. J. Math. Stat. 49 (2020), 1245-1260. (2020) Zbl1478.65102MR4199075DOI10.15672/hujms.494876
  31. Dijk, W. van, Toyama, F. M., 10.1103/PhysRevE.75.036707, Phys. Rev. E 75 (2007), Article ID 036707, 10 pages. (2007) MR2358574DOI10.1103/PhysRevE.75.036707
  32. Wang, T., Zheng, Q., Lu, L., 10.1016/j.cam.2017.05.002, J. Comput. Appl. Math. 325 (2017), 188-197. (2017) Zbl1365.65087MR3658905DOI10.1016/j.cam.2017.05.002
  33. Wu, S.-L., 10.1002/nla.1952, Numer. Linear Algebra Appl. 22 (2015), 338-356. (2015) Zbl1363.65055MR3313262DOI10.1002/nla.1952
  34. Xiao, X.-Y., Wang, X., Yin, H.-W., 10.1016/j.camwa.2017.07.007, Comput. Math. Appl. 74 (2017), 2269-2280. (2017) Zbl1398.65053MR3718115DOI10.1016/j.camwa.2017.07.007
  35. Xiao, X.-Y., Wang, X., Yin, H.-W., 10.1016/j.camwa.2017.09.004, Comput. Math. Appl. 75 (2018), 235-247. (2018) Zbl1478.65023MR3758701DOI10.1016/j.camwa.2017.09.004
  36. Yang, A.-L., 10.1016/j.aml.2019.02.031, Appl. Math. Lett. 94 (2019), 210-216. (2019) Zbl1411.65055MR3924568DOI10.1016/j.aml.2019.02.031
  37. Yang, A.-L., Cao, Y., Wu, Y.-J., 10.1007/s10543-018-0729-6, BIT 59 (2019), 299-319. (2019) Zbl1432.65033MR3921381DOI10.1007/s10543-018-0729-6
  38. Zeng, M.-L., Inexact modified QHSS iteration methods for complex symmetric linear systems of strong skew-Hermitian parts, IAENG, Int. J. Appl. Math. 51 (2021), 109-115. (2021) 
  39. Zhang, J., Dai, H., 10.1016/j.aml.2015.05.006, Appl. Math. Lett. 49 (2015), 100-106. (2015) Zbl1382.65083MR3361702DOI10.1016/j.aml.2015.05.006
  40. Zhang, J.-H., Dai, H., 10.1007/s11075-016-0175-y, Numer. Algorithms 74 (2017), 889-903. (2017) Zbl1366.65049MR3611559DOI10.1007/s11075-016-0175-y
  41. Zhang, J., Wang, Z., Zhao, J., 10.1016/j.amc.2019.02.020, Appl. Math. Comput. 353 (2019), 338-346. (2019) Zbl1429.65073MR3916000DOI10.1016/j.amc.2019.02.020
  42. Zhang, J.-L., Fan, H.-T., Gu, C.-Q., 10.1007/s11075-017-0323-z, Numer. Algorithms 77 (2018), 451-478. (2018) Zbl1388.65031MR3748379DOI10.1007/s11075-017-0323-z
  43. Zhang, W.-H., Yang, A.-L., Wu, Y.-J., 10.1007/s11075-020-00944-3, Numer. Algorithms 86 (2021), 1543-1559. (2021) Zbl1470.65057MR4229637DOI10.1007/s11075-020-00944-3
  44. Zheng, Z., Huang, F.-L., Peng, Y.-C., 10.1016/j.aml.2017.04.017, Appl. Math. Lett. 73 (2017), 91-97. (2017) Zbl1375.65056MR3659913DOI10.1016/j.aml.2017.04.017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.