On the signless Laplacian and normalized signless Laplacian spreads of graphs
Emina Milovanović; Serife B. Bozkurt Altindağ; Marjan Matejić; Igor Milovanović
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 499-511
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMilovanović, Emina, et al. "On the signless Laplacian and normalized signless Laplacian spreads of graphs." Czechoslovak Mathematical Journal 73.2 (2023): 499-511. <http://eudml.org/doc/299397>.
@article{Milovanović2023,
abstract = {Let $G=(V,E)$, $V=\lbrace v_1,v_2,\ldots ,v_n\rbrace $, be a simple connected graph with $n$ vertices, $m$ edges and a sequence of vertex degrees $d_1\ge d_2\ge \cdots \ge d_n$. Denote by $A$ and $D$ the adjacency matrix and diagonal vertex degree matrix of $G$, respectively. The signless Laplacian of $G$ is defined as $L^+=D+A$ and the normalized signless Laplacian matrix as $\mathcal \{L\}^+=D^\{-1/2\}L^+ D^\{-1/2\}$. The normalized signless Laplacian spreads of a connected nonbipartite graph $G$ are defined as $r(G)= \gamma _\{2\}^\{+\}/ \gamma _\{n\}^\{+\}$ and $l(G)=\gamma _\{2\}^\{+\}-\gamma _\{n\}^\{+\}$, where $\gamma _1^+ \ge \gamma _2^+\ge \cdots \ge \gamma _n^+ \ge 0$ are eigenvalues of $\mathcal \{L\}^+$. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.},
author = {Milovanović, Emina, Bozkurt Altindağ, Serife B., Matejić, Marjan, Milovanović, Igor},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian graph spectra; bipartite graph; spread of graph},
language = {eng},
number = {2},
pages = {499-511},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the signless Laplacian and normalized signless Laplacian spreads of graphs},
url = {http://eudml.org/doc/299397},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Milovanović, Emina
AU - Bozkurt Altindağ, Serife B.
AU - Matejić, Marjan
AU - Milovanović, Igor
TI - On the signless Laplacian and normalized signless Laplacian spreads of graphs
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 499
EP - 511
AB - Let $G=(V,E)$, $V=\lbrace v_1,v_2,\ldots ,v_n\rbrace $, be a simple connected graph with $n$ vertices, $m$ edges and a sequence of vertex degrees $d_1\ge d_2\ge \cdots \ge d_n$. Denote by $A$ and $D$ the adjacency matrix and diagonal vertex degree matrix of $G$, respectively. The signless Laplacian of $G$ is defined as $L^+=D+A$ and the normalized signless Laplacian matrix as $\mathcal {L}^+=D^{-1/2}L^+ D^{-1/2}$. The normalized signless Laplacian spreads of a connected nonbipartite graph $G$ are defined as $r(G)= \gamma _{2}^{+}/ \gamma _{n}^{+}$ and $l(G)=\gamma _{2}^{+}-\gamma _{n}^{+}$, where $\gamma _1^+ \ge \gamma _2^+\ge \cdots \ge \gamma _n^+ \ge 0$ are eigenvalues of $\mathcal {L}^+$. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
LA - eng
KW - Laplacian graph spectra; bipartite graph; spread of graph
UR - http://eudml.org/doc/299397
ER -
References
top- Andrade, E., Dahl, G., Leal, L., Robbiano, M., 10.1016/j.laa.2018.12.019, Linear Algebra Appl. 566 (2019), 98-120. (2019) Zbl1410.05114MR3896162DOI10.1016/j.laa.2018.12.019
- Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J., 10.1016/j.laa.2017.07.037, Linear Algebra Appl. 544 (2018), 254-272. (2018) Zbl1388.05108MR3765785DOI10.1016/j.laa.2017.07.037
- Biernacki, M., Pidek, H., Ryll-Nardzewski, C., Sur une inéqualité entre des intégrales definies, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 4 (1950), 1-4 French. (1950) Zbl0040.31904MR0042474
- ndağ, Ş. B. Bozkurt Altı, 10.22052/mir.2019.208991.1180, Math. Interdisc. Research 4 (2019), 171-182. (2019) DOI10.22052/mir.2019.208991.1180
- ndağ, Ş. B. Bozkurt Altı, 10.7251/BIMVI2101135A, Bull. Int. Math. Virtual Inst. 11 (2021), 135-146. (2021) Zbl07540020MR4187056DOI10.7251/BIMVI2101135A
- Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S., Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. (2010) Zbl1265.05113MR2677585
- Butler, S. K., Eigenvalues and Structures of Graphs: Ph.D. Thesis, University of California, San Diego (2008). (2008) MR2711548
- Cavers, M., Fallat, S., Kirkland, S., 10.1016/j.laa.2010.02.002, Linear Algebra Appl. 433 (2010), 172-190. (2010) Zbl1217.05138MR2645076DOI10.1016/j.laa.2010.02.002
- Cheng, B., Liu, B., 10.1016/j.laa.2013.01.003, Linear Algebra Appl. 438 (2013), 4510-4519. (2013) Zbl1282.05104MR3034547DOI10.1016/j.laa.2013.01.003
- Chung, F. R. K., 10.1090/cbms/092, Regional Conference Series in Mathematics 92. AMS, Providence (1997). (1997) Zbl0867.05046MR1421568DOI10.1090/cbms/092
- Cirtoaje, V., 10.1155/2010/128258, J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. (2010) Zbl1204.26031MR2749168DOI10.1155/2010/128258
- Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs: Theory and Applications, Pure and Applied Mathematics 87. Academic Press, New York (1980). (1980) MR0572262
- Cvetković, D., Rowlinson, P., Simić, S. K., 10.1016/j.laa.2007.01.009, Linear Algebra Appl. 423 (2007), 155-171. (2007) Zbl1113.05061MR2312332DOI10.1016/j.laa.2007.01.009
- Cvetković, D., Simić, S. K., 10.1016/j.laa.2009.05.020, Linear Algebra Appl. 432 (2010), 2257-2277. (2010) Zbl1218.05089MR2599858DOI10.1016/j.laa.2009.05.020
- Das, K. C., Güngör, A. D., Bozkurt, Ş. B., On the normalized Laplacian eigenvalues of graphs, Ars Comb. 118 (2015), 143-154. (2015) Zbl1349.05205MR3330443
- Gomes, H., Gutman, I., Martins, E. Andrade, Robbiano, M., Martín, B. San, On Randić spread, MATCH Commun. Math. Comput. Chem. 72 (2014), 249-266. (2014) Zbl1464.05070MR3241719
- Gomes, H., Martins, E., Robbiano, M., Martín, B. San, Upper bounds for Randić spread, MATCH Commun. Math. Comput. Chem. 72 (2014), 267-278. (2014) Zbl1464.05236MR3241720
- Gu, R., Huang, F., Li, X., 10.22108/TOC.2014.5573, Trans. Comb. 3 (2014), 1-9. (2014) Zbl1463.05331MR3239628DOI10.22108/TOC.2014.5573
- Gutman, I., Milovanović, E., Milovanović, I., 10.18514/MMN.2015.1140, Miskolc Math. Notes 16 (2015), 195-203. (2015) Zbl1340.05164MR3384599DOI10.18514/MMN.2015.1140
- Gutman, I., Trinajstić, N., 10.1016/0009-2614(72)85099-1, Chem. Phys. Lett. 17 (1972), 535-538. (1972) DOI10.1016/0009-2614(72)85099-1
- Liu, B., Huang, Y., Feng, J., A note on the Randić spectral radius, MATCH Commun. Math. Comput. Chem. 68 (2012), 913-916. (2012) Zbl1289.05133MR3052189
- Liu, M., Liu, B., 10.1016/j.laa.2009.08.025, Linear Algebra Appl. 432 (2010), 505-514. (2010) Zbl1206.05064MR2577696DOI10.1016/j.laa.2009.08.025
- Güngör, A. D. Maden, Çevik, A. S., Habibi, N., 10.7153/mia-17-23, Math. Inequal. Appl. 17 (2014), 283-294. (2014) Zbl1408.05082MR3220994DOI10.7153/mia-17-23
- Milovanović, I., Milovanović, E., Glogić, E., On applications of Andrica-Badea and Nagy inequalities in spectral graph theory, Stud. Univ. Babeş-Bolyai, Math. 60 (2015), 603-609. (2015) Zbl1389.05104MR3437422
- Mitrinović, D. S., 10.1007/978-3-642-99970-3, Die Grundlehren der mathematischen Wissenschaften 165. Springer, Berlin (1970). (1970) Zbl0199.38101MR274686DOI10.1007/978-3-642-99970-3
- Randić, M., 10.1021/ja00856a001, J. Am. Chem. Soc. 97 (1975), 6609-6615. (1975) DOI10.1021/ja00856a001
- Shi, L., 10.1016/j.disc.2009.03.036, Discrete Math. 309 (2009), 5238-5241. (2009) Zbl1179.05039MR2548924DOI10.1016/j.disc.2009.03.036
- Zumstein, P., Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis, ETH Zürich, Zürich (2005). (2005)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.