On the signless Laplacian and normalized signless Laplacian spreads of graphs

Emina Milovanović; Serife B. Bozkurt Altindağ; Marjan Matejić; Igor Milovanović

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 499-511
  • ISSN: 0011-4642

Abstract

top
Let G = ( V , E ) , V = { v 1 , v 2 , ... , v n } , be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d 1 d 2 d n . Denote by A and D the adjacency matrix and diagonal vertex degree matrix of G , respectively. The signless Laplacian of G is defined as L + = D + A and the normalized signless Laplacian matrix as + = D - 1 / 2 L + D - 1 / 2 . The normalized signless Laplacian spreads of a connected nonbipartite graph G are defined as r ( G ) = γ 2 + / γ n + and l ( G ) = γ 2 + - γ n + , where γ 1 + γ 2 + γ n + 0 are eigenvalues of + . We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.

How to cite

top

Milovanović, Emina, et al. "On the signless Laplacian and normalized signless Laplacian spreads of graphs." Czechoslovak Mathematical Journal 73.2 (2023): 499-511. <http://eudml.org/doc/299397>.

@article{Milovanović2023,
abstract = {Let $G=(V,E)$, $V=\lbrace v_1,v_2,\ldots ,v_n\rbrace $, be a simple connected graph with $n$ vertices, $m$ edges and a sequence of vertex degrees $d_1\ge d_2\ge \cdots \ge d_n$. Denote by $A$ and $D$ the adjacency matrix and diagonal vertex degree matrix of $G$, respectively. The signless Laplacian of $G$ is defined as $L^+=D+A$ and the normalized signless Laplacian matrix as $\mathcal \{L\}^+=D^\{-1/2\}L^+ D^\{-1/2\}$. The normalized signless Laplacian spreads of a connected nonbipartite graph $G$ are defined as $r(G)= \gamma _\{2\}^\{+\}/ \gamma _\{n\}^\{+\}$ and $l(G)=\gamma _\{2\}^\{+\}-\gamma _\{n\}^\{+\}$, where $\gamma _1^+ \ge \gamma _2^+\ge \cdots \ge \gamma _n^+ \ge 0$ are eigenvalues of $\mathcal \{L\}^+$. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.},
author = {Milovanović, Emina, Bozkurt Altindağ, Serife B., Matejić, Marjan, Milovanović, Igor},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian graph spectra; bipartite graph; spread of graph},
language = {eng},
number = {2},
pages = {499-511},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the signless Laplacian and normalized signless Laplacian spreads of graphs},
url = {http://eudml.org/doc/299397},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Milovanović, Emina
AU - Bozkurt Altindağ, Serife B.
AU - Matejić, Marjan
AU - Milovanović, Igor
TI - On the signless Laplacian and normalized signless Laplacian spreads of graphs
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 499
EP - 511
AB - Let $G=(V,E)$, $V=\lbrace v_1,v_2,\ldots ,v_n\rbrace $, be a simple connected graph with $n$ vertices, $m$ edges and a sequence of vertex degrees $d_1\ge d_2\ge \cdots \ge d_n$. Denote by $A$ and $D$ the adjacency matrix and diagonal vertex degree matrix of $G$, respectively. The signless Laplacian of $G$ is defined as $L^+=D+A$ and the normalized signless Laplacian matrix as $\mathcal {L}^+=D^{-1/2}L^+ D^{-1/2}$. The normalized signless Laplacian spreads of a connected nonbipartite graph $G$ are defined as $r(G)= \gamma _{2}^{+}/ \gamma _{n}^{+}$ and $l(G)=\gamma _{2}^{+}-\gamma _{n}^{+}$, where $\gamma _1^+ \ge \gamma _2^+\ge \cdots \ge \gamma _n^+ \ge 0$ are eigenvalues of $\mathcal {L}^+$. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
LA - eng
KW - Laplacian graph spectra; bipartite graph; spread of graph
UR - http://eudml.org/doc/299397
ER -

References

top
  1. Andrade, E., Dahl, G., Leal, L., Robbiano, M., 10.1016/j.laa.2018.12.019, Linear Algebra Appl. 566 (2019), 98-120. (2019) Zbl1410.05114MR3896162DOI10.1016/j.laa.2018.12.019
  2. Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J., 10.1016/j.laa.2017.07.037, Linear Algebra Appl. 544 (2018), 254-272. (2018) Zbl1388.05108MR3765785DOI10.1016/j.laa.2017.07.037
  3. Biernacki, M., Pidek, H., Ryll-Nardzewski, C., Sur une inéqualité entre des intégrales definies, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 4 (1950), 1-4 French. (1950) Zbl0040.31904MR0042474
  4. ndağ, Ş. B. Bozkurt Altı, 10.22052/mir.2019.208991.1180, Math. Interdisc. Research 4 (2019), 171-182. (2019) DOI10.22052/mir.2019.208991.1180
  5. ndağ, Ş. B. Bozkurt Altı, 10.7251/BIMVI2101135A, Bull. Int. Math. Virtual Inst. 11 (2021), 135-146. (2021) Zbl07540020MR4187056DOI10.7251/BIMVI2101135A
  6. Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S., Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. (2010) Zbl1265.05113MR2677585
  7. Butler, S. K., Eigenvalues and Structures of Graphs: Ph.D. Thesis, University of California, San Diego (2008). (2008) MR2711548
  8. Cavers, M., Fallat, S., Kirkland, S., 10.1016/j.laa.2010.02.002, Linear Algebra Appl. 433 (2010), 172-190. (2010) Zbl1217.05138MR2645076DOI10.1016/j.laa.2010.02.002
  9. Cheng, B., Liu, B., 10.1016/j.laa.2013.01.003, Linear Algebra Appl. 438 (2013), 4510-4519. (2013) Zbl1282.05104MR3034547DOI10.1016/j.laa.2013.01.003
  10. Chung, F. R. K., 10.1090/cbms/092, Regional Conference Series in Mathematics 92. AMS, Providence (1997). (1997) Zbl0867.05046MR1421568DOI10.1090/cbms/092
  11. Cirtoaje, V., 10.1155/2010/128258, J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. (2010) Zbl1204.26031MR2749168DOI10.1155/2010/128258
  12. Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs: Theory and Applications, Pure and Applied Mathematics 87. Academic Press, New York (1980). (1980) MR0572262
  13. Cvetković, D., Rowlinson, P., Simić, S. K., 10.1016/j.laa.2007.01.009, Linear Algebra Appl. 423 (2007), 155-171. (2007) Zbl1113.05061MR2312332DOI10.1016/j.laa.2007.01.009
  14. Cvetković, D., Simić, S. K., 10.1016/j.laa.2009.05.020, Linear Algebra Appl. 432 (2010), 2257-2277. (2010) Zbl1218.05089MR2599858DOI10.1016/j.laa.2009.05.020
  15. Das, K. C., Güngör, A. D., Bozkurt, Ş. B., On the normalized Laplacian eigenvalues of graphs, Ars Comb. 118 (2015), 143-154. (2015) Zbl1349.05205MR3330443
  16. Gomes, H., Gutman, I., Martins, E. Andrade, Robbiano, M., Martín, B. San, On Randić spread, MATCH Commun. Math. Comput. Chem. 72 (2014), 249-266. (2014) Zbl1464.05070MR3241719
  17. Gomes, H., Martins, E., Robbiano, M., Martín, B. San, Upper bounds for Randić spread, MATCH Commun. Math. Comput. Chem. 72 (2014), 267-278. (2014) Zbl1464.05236MR3241720
  18. Gu, R., Huang, F., Li, X., 10.22108/TOC.2014.5573, Trans. Comb. 3 (2014), 1-9. (2014) Zbl1463.05331MR3239628DOI10.22108/TOC.2014.5573
  19. Gutman, I., Milovanović, E., Milovanović, I., 10.18514/MMN.2015.1140, Miskolc Math. Notes 16 (2015), 195-203. (2015) Zbl1340.05164MR3384599DOI10.18514/MMN.2015.1140
  20. Gutman, I., Trinajstić, N., 10.1016/0009-2614(72)85099-1, Chem. Phys. Lett. 17 (1972), 535-538. (1972) DOI10.1016/0009-2614(72)85099-1
  21. Liu, B., Huang, Y., Feng, J., A note on the Randić spectral radius, MATCH Commun. Math. Comput. Chem. 68 (2012), 913-916. (2012) Zbl1289.05133MR3052189
  22. Liu, M., Liu, B., 10.1016/j.laa.2009.08.025, Linear Algebra Appl. 432 (2010), 505-514. (2010) Zbl1206.05064MR2577696DOI10.1016/j.laa.2009.08.025
  23. Güngör, A. D. Maden, Çevik, A. S., Habibi, N., 10.7153/mia-17-23, Math. Inequal. Appl. 17 (2014), 283-294. (2014) Zbl1408.05082MR3220994DOI10.7153/mia-17-23
  24. Milovanović, I., Milovanović, E., Glogić, E., On applications of Andrica-Badea and Nagy inequalities in spectral graph theory, Stud. Univ. Babeş-Bolyai, Math. 60 (2015), 603-609. (2015) Zbl1389.05104MR3437422
  25. Mitrinović, D. S., 10.1007/978-3-642-99970-3, Die Grundlehren der mathematischen Wissenschaften 165. Springer, Berlin (1970). (1970) Zbl0199.38101MR274686DOI10.1007/978-3-642-99970-3
  26. Randić, M., 10.1021/ja00856a001, J. Am. Chem. Soc. 97 (1975), 6609-6615. (1975) DOI10.1021/ja00856a001
  27. Shi, L., 10.1016/j.disc.2009.03.036, Discrete Math. 309 (2009), 5238-5241. (2009) Zbl1179.05039MR2548924DOI10.1016/j.disc.2009.03.036
  28. Zumstein, P., Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis, ETH Zürich, Zürich (2005). (2005) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.