Function algebras of Besov and Triebel-Lizorkin-type

Fares Bensaid; Madani Moussai

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1281-1300
  • ISSN: 0011-4642

Abstract

top
We prove that in the homogeneous Besov-type space the set of bounded functions constitutes a unital quasi-Banach algebra for the pointwise product. The same result holds for the homogeneous Triebel-Lizorkin-type space.

How to cite

top

Bensaid, Fares, and Moussai, Madani. "Function algebras of Besov and Triebel-Lizorkin-type." Czechoslovak Mathematical Journal 73.4 (2023): 1281-1300. <http://eudml.org/doc/299403>.

@article{Bensaid2023,
abstract = {We prove that in the homogeneous Besov-type space the set of bounded functions constitutes a unital quasi-Banach algebra for the pointwise product. The same result holds for the homogeneous Triebel-Lizorkin-type space.},
author = {Bensaid, Fares, Moussai, Madani},
journal = {Czechoslovak Mathematical Journal},
keywords = {Littlewood-Paley decomposition; Besov-type space; Triebel-Lizorkin-type space},
language = {eng},
number = {4},
pages = {1281-1300},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Function algebras of Besov and Triebel-Lizorkin-type},
url = {http://eudml.org/doc/299403},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Bensaid, Fares
AU - Moussai, Madani
TI - Function algebras of Besov and Triebel-Lizorkin-type
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1281
EP - 1300
AB - We prove that in the homogeneous Besov-type space the set of bounded functions constitutes a unital quasi-Banach algebra for the pointwise product. The same result holds for the homogeneous Triebel-Lizorkin-type space.
LA - eng
KW - Littlewood-Paley decomposition; Besov-type space; Triebel-Lizorkin-type space
UR - http://eudml.org/doc/299403
ER -

References

top
  1. Bensaid, F., Moussai, M., 10.4310/maa.2019.v26.n4.a3, Methods Appl. Anal. 26 (2019), 349-370. (2019) Zbl1455.46032MR4100094DOI10.4310/maa.2019.v26.n4.a3
  2. Bergh, G., Löfström, J., 10.1007/978-3-642-66451-9, Grundlehren der mathematischen Wissenschaften 223. Springer, Berlin (1976). (1976) Zbl0344.46071MR482275DOI10.1007/978-3-642-66451-9
  3. Bourdaud, G., Moussai, M., Sickel, W., 10.1016/j.jfa.2010.04.008, J. Funct. Anal. 259 (2010), 1098-1128. (2010) Zbl1219.47092MR2652183DOI10.1016/j.jfa.2010.04.008
  4. Bourdaud, G., Moussai, M., Sickel, W., 10.1007/s10231-013-0342-x, Ann. Mat. Pura Appl. (4) 193 (2014), 1519-1554. (2014) Zbl1314.46038MR3262646DOI10.1007/s10231-013-0342-x
  5. Baraka, A. El, An embedding theorem for Campanato spaces, Electron. J. Differ. Equ. 66 (2002), Article ID 66, 17 pages. (2002) Zbl1002.46024MR1921139
  6. Frazier, M., Jawerth, B., 10.1512/iumj.1985.34.34041, Indiana Univ. Math. J. 34 (1985), 777-799. (1985) Zbl0551.46018MR808825DOI10.1512/iumj.1985.34.34041
  7. Moussai, M., 10.4171/RMI/676, Rev. Mat. Iberoam. 28 (2012), 239-272. (2012) Zbl1238.47040MR2904140DOI10.4171/RMI/676
  8. Moussai, M., 10.1142/s0219530514500250, Anal. Appl., Singap. 13 (2015), 149-183. (2015) Zbl1348.46039MR3319662DOI10.1142/s0219530514500250
  9. Moussai, M., 10.4064/sm8136-4-2017, Stud. Math. 241 (2018), 1-15. (2018) Zbl1415.46024MR3732927DOI10.4064/sm8136-4-2017
  10. Peetre, J., New Thoughts on Besov Spaces, Duke University Mathematics Series I. Duke University, Durham (1976). (1976) Zbl0356.46038MR0461123
  11. Runst, T., Sickel, W., 10.1515/9783110812411, de Gruyter Series in Nonlinear Analysis and Applications 3. Walter de Gruyter, Berlin (1996). (1996) Zbl0873.35001MR1419319DOI10.1515/9783110812411
  12. Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78. Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
  13. Triebel, H., 10.1007/978-3-0346-0419-2, Monographs in Mathematics 84. Birkhäuser, Basel (1992). (1992) Zbl0763.46025MR1163193DOI10.1007/978-3-0346-0419-2
  14. Yang, D., Yuan, W., 10.1007/s00209-009-0524-9, Math. Z. 265 (2010), 451-480. (2010) Zbl1191.42011MR2609320DOI10.1007/s00209-009-0524-9
  15. Yuan, W., Sickel, W., Yang, D., 10.1007/978-3-642-14606-0, Lecture Notes in Mathematics 2005. Springer, Berlin (2010). (2010) Zbl1207.46002MR2683024DOI10.1007/978-3-642-14606-0

NotesEmbed ?

top

You must be logged in to post comments.