Function algebras of Besov and Triebel-Lizorkin-type

Fares Bensaid; Madani Moussai

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1281-1300
  • ISSN: 0011-4642

Abstract

top
We prove that in the homogeneous Besov-type space the set of bounded functions constitutes a unital quasi-Banach algebra for the pointwise product. The same result holds for the homogeneous Triebel-Lizorkin-type space.

How to cite

top

Bensaid, Fares, and Moussai, Madani. "Function algebras of Besov and Triebel-Lizorkin-type." Czechoslovak Mathematical Journal 73.4 (2023): 1281-1300. <http://eudml.org/doc/299403>.

@article{Bensaid2023,
abstract = {We prove that in the homogeneous Besov-type space the set of bounded functions constitutes a unital quasi-Banach algebra for the pointwise product. The same result holds for the homogeneous Triebel-Lizorkin-type space.},
author = {Bensaid, Fares, Moussai, Madani},
journal = {Czechoslovak Mathematical Journal},
keywords = {Littlewood-Paley decomposition; Besov-type space; Triebel-Lizorkin-type space},
language = {eng},
number = {4},
pages = {1281-1300},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Function algebras of Besov and Triebel-Lizorkin-type},
url = {http://eudml.org/doc/299403},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Bensaid, Fares
AU - Moussai, Madani
TI - Function algebras of Besov and Triebel-Lizorkin-type
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1281
EP - 1300
AB - We prove that in the homogeneous Besov-type space the set of bounded functions constitutes a unital quasi-Banach algebra for the pointwise product. The same result holds for the homogeneous Triebel-Lizorkin-type space.
LA - eng
KW - Littlewood-Paley decomposition; Besov-type space; Triebel-Lizorkin-type space
UR - http://eudml.org/doc/299403
ER -

References

top
  1. Bensaid, F., Moussai, M., 10.4310/maa.2019.v26.n4.a3, Methods Appl. Anal. 26 (2019), 349-370. (2019) Zbl1455.46032MR4100094DOI10.4310/maa.2019.v26.n4.a3
  2. Bergh, G., Löfström, J., 10.1007/978-3-642-66451-9, Grundlehren der mathematischen Wissenschaften 223. Springer, Berlin (1976). (1976) Zbl0344.46071MR482275DOI10.1007/978-3-642-66451-9
  3. Bourdaud, G., Moussai, M., Sickel, W., 10.1016/j.jfa.2010.04.008, J. Funct. Anal. 259 (2010), 1098-1128. (2010) Zbl1219.47092MR2652183DOI10.1016/j.jfa.2010.04.008
  4. Bourdaud, G., Moussai, M., Sickel, W., 10.1007/s10231-013-0342-x, Ann. Mat. Pura Appl. (4) 193 (2014), 1519-1554. (2014) Zbl1314.46038MR3262646DOI10.1007/s10231-013-0342-x
  5. Baraka, A. El, An embedding theorem for Campanato spaces, Electron. J. Differ. Equ. 66 (2002), Article ID 66, 17 pages. (2002) Zbl1002.46024MR1921139
  6. Frazier, M., Jawerth, B., 10.1512/iumj.1985.34.34041, Indiana Univ. Math. J. 34 (1985), 777-799. (1985) Zbl0551.46018MR808825DOI10.1512/iumj.1985.34.34041
  7. Moussai, M., 10.4171/RMI/676, Rev. Mat. Iberoam. 28 (2012), 239-272. (2012) Zbl1238.47040MR2904140DOI10.4171/RMI/676
  8. Moussai, M., 10.1142/s0219530514500250, Anal. Appl., Singap. 13 (2015), 149-183. (2015) Zbl1348.46039MR3319662DOI10.1142/s0219530514500250
  9. Moussai, M., 10.4064/sm8136-4-2017, Stud. Math. 241 (2018), 1-15. (2018) Zbl1415.46024MR3732927DOI10.4064/sm8136-4-2017
  10. Peetre, J., New Thoughts on Besov Spaces, Duke University Mathematics Series I. Duke University, Durham (1976). (1976) Zbl0356.46038MR0461123
  11. Runst, T., Sickel, W., 10.1515/9783110812411, de Gruyter Series in Nonlinear Analysis and Applications 3. Walter de Gruyter, Berlin (1996). (1996) Zbl0873.35001MR1419319DOI10.1515/9783110812411
  12. Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78. Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
  13. Triebel, H., 10.1007/978-3-0346-0419-2, Monographs in Mathematics 84. Birkhäuser, Basel (1992). (1992) Zbl0763.46025MR1163193DOI10.1007/978-3-0346-0419-2
  14. Yang, D., Yuan, W., 10.1007/s00209-009-0524-9, Math. Z. 265 (2010), 451-480. (2010) Zbl1191.42011MR2609320DOI10.1007/s00209-009-0524-9
  15. Yuan, W., Sickel, W., Yang, D., 10.1007/978-3-642-14606-0, Lecture Notes in Mathematics 2005. Springer, Berlin (2010). (2010) Zbl1207.46002MR2683024DOI10.1007/978-3-642-14606-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.