Nonoscillatory solutions of discrete fractional order equations with positive and negative terms

Jehad Alzabut; Said Rezk Grace; A. George Maria Selvam; Rajendran Janagaraj

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 4, page 461-479
  • ISSN: 0862-7959

Abstract

top
This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form Δ γ u ( κ ) + Θ [ κ + γ , w ( κ + γ ) ] = Φ ( κ + γ ) + Υ ( κ + γ ) w ν ( κ + γ ) + Ψ [ κ + γ , w ( κ + γ ) ] , κ 1 - γ , u 0 = c 0 , where 1 - γ = { 1 - γ , 2 - γ , 3 - γ , } , 0 < γ 1 , Δ γ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results.

How to cite

top

Alzabut, Jehad, et al. "Nonoscillatory solutions of discrete fractional order equations with positive and negative terms." Mathematica Bohemica 148.4 (2023): 461-479. <http://eudml.org/doc/299406>.

@article{Alzabut2023,
abstract = {This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form \begin\{align\} \Delta ^\{\gamma \}u(\kappa )&+\Theta [\kappa +\gamma ,w(\kappa +\gamma )]\\=&\Phi (\kappa +\gamma )+\Upsilon (\kappa +\gamma )w^\{\nu \}(\kappa +\gamma ) +\Psi [\kappa +\gamma ,w(\kappa +\gamma )],\quad \kappa \in \mathbb \{N\}\_\{1-\gamma \},\\ u\_\{0\} =&c\_\{0\}, \end\{align\} where $\mathbb \{N\}_\{1-\gamma \}=\lbrace 1-\gamma ,2-\gamma ,3-\gamma ,\cdots \rbrace $, $0<\gamma \le 1$, $\Delta ^\{\gamma \}$ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results.},
author = {Alzabut, Jehad, Grace, Said Rezk, Selvam, A. George Maria, Janagaraj, Rajendran},
journal = {Mathematica Bohemica},
keywords = {fractional difference equation; nonoscillatory; Caputo fractional difference; forcing term},
language = {eng},
number = {4},
pages = {461-479},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonoscillatory solutions of discrete fractional order equations with positive and negative terms},
url = {http://eudml.org/doc/299406},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Alzabut, Jehad
AU - Grace, Said Rezk
AU - Selvam, A. George Maria
AU - Janagaraj, Rajendran
TI - Nonoscillatory solutions of discrete fractional order equations with positive and negative terms
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 461
EP - 479
AB - This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form \begin{align} \Delta ^{\gamma }u(\kappa )&+\Theta [\kappa +\gamma ,w(\kappa +\gamma )]\\=&\Phi (\kappa +\gamma )+\Upsilon (\kappa +\gamma )w^{\nu }(\kappa +\gamma ) +\Psi [\kappa +\gamma ,w(\kappa +\gamma )],\quad \kappa \in \mathbb {N}_{1-\gamma },\\ u_{0} =&c_{0}, \end{align} where $\mathbb {N}_{1-\gamma }=\lbrace 1-\gamma ,2-\gamma ,3-\gamma ,\cdots \rbrace $, $0<\gamma \le 1$, $\Delta ^{\gamma }$ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results.
LA - eng
KW - fractional difference equation; nonoscillatory; Caputo fractional difference; forcing term
UR - http://eudml.org/doc/299406
ER -

References

top
  1. Alzabut, J., Abdeljawad, T., Sufficient conditions for the oscillation of nonlinear fractional difference equations, J. Fract. Calc. Appl. 5 (2014), 177-187. (2014) Zbl07444530MR3234107
  2. Alzabut, J., Abdeljawad, T., Alrabaiah, H., Oscillation criteria for forced and damped nabla fractional difference equations, J. Comput. Anal. Appl. 24 (2018), 1387-1394. (2018) MR3753400
  3. Alzabut, J., Muthulakshmi, V., Özbekler, A., Adüzel, H., 10.3390/math7080687, Mathematics 7 (2019), Article ID 687, 14 pages. (2019) DOI10.3390/math7080687
  4. Atangana, A., Gómez-Aguilar, J. F., 10.1140/epjp/i2018-12021-3, Eur. Phys. J. Plus 133 (2018), Article ID 166, 22 pages. (2018) DOI10.1140/epjp/i2018-12021-3
  5. Atı, F. M., Eloe, P. W., A transform method in discrete fractional calculus, Int. J. Difference Equ. 2 (2007), 165-176. (2007) MR2493595
  6. Atı, F. M., Şengül, S., 10.1016/j.jmaa.2010.02.009, J. Math. Anal. Appl. 369 (2010), 1-9. (2010) Zbl1204.39004MR2643839DOI10.1016/j.jmaa.2010.02.009
  7. Chatzarakis, G. E., Selvam, A. G. M., Janagaraj, R., Miliaras, G. N., 10.1515/ms-2017-0422, Math. Slovaca 70 (2020), 1165-1182. (2020) Zbl1479.39010MR4156816DOI10.1515/ms-2017-0422
  8. Chen, F., 10.14232/ejqtde.2011.1.39, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 39, 18 pages. (2011) Zbl1340.26013MR2805759DOI10.14232/ejqtde.2011.1.39
  9. Elaydi, S. N., 10.1007/0-387-27602-5, Undergraduate Texts in Mathematics. Springer, New York (2005). (2005) Zbl1071.39001MR2128146DOI10.1007/0-387-27602-5
  10. Grace, S. R., Graef, J. R., Tunç, E., 10.1016/J.AML.2019.05.032, Appl. Math. Lett. 97 (2019), 114-120. (2019) Zbl1425.34012MR3957498DOI10.1016/J.AML.2019.05.032
  11. Grace, S. R., Zafer, A., 10.1140/epjst/e2018-00043-1, Eur. Phys. J. Spec. Top. 226 (2017), 3657-3665. (2017) MR3783546DOI10.1140/epjst/e2018-00043-1
  12. Graef, J. R., Grace, S. R., Tunç, E., 10.7494/OpMath.2020.40.2.227, Opusc. Math. 40 (2020), 227-239. (2020) Zbl1437.34006MR4087615DOI10.7494/OpMath.2020.40.2.227
  13. Holm, M., The Theory of Discrete Fractional Calculus: Development and Application, University of Nebraska, Lincoln (2011). (2011) MR2873503
  14. Holte, J. M., Discrete Gronwall lemma and applications, MAA North Central Section Meeting at the University of North Dakota. Available at http://homepages.gac.edu/ {holte/publications/GronwallLemma.pdf} (2009), 1-8. (2009) 
  15. Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T., Bates, J. H. T., 10.1016/j.cnsns.2017.04.001, Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141-159. (2017) Zbl1467.92050MR3645874DOI10.1016/j.cnsns.2017.04.001
  16. Kumar, D., Baleanu, D., 10.3389/fphy.2019.00081, Fractional Calculus and Its Applications in Physics Frontiers in Physics 7. Frontiers Media, London (2019), 1-4. (2019) DOI10.3389/fphy.2019.00081
  17. Selvam, A. G. M., Alzabut, J., Janagaraj, R., Adiguzel, H., 10.46719/dsa20202929, Dyn. Syst. Appl. 29 (2020), 327-342. (2020) DOI10.46719/dsa20202929
  18. Selvam, A. G. M., Jacintha, M., Janagaraj, R., 10.37418/amsj.9.7.62, Adv. Math. Sci. J. 9 (2020), 4971-4983. (2020) DOI10.37418/amsj.9.7.62
  19. Selvam, A. G. M., Janagaraj, R., 10.12732/ijam.v32i3.5, Int. J. Appl. Math. 32 (2019), 433-441. (2019) DOI10.12732/ijam.v32i3.5
  20. Selvam, A. G. M., Janagaraj, R., 10.1088/1742-6596/1597/1/012057, J. Phys., Conf. Ser. 1597 (2020), Article ID 012057, 8 pages. (2020) DOI10.1088/1742-6596/1597/1/012057
  21. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y., 10.1016/j.cnsns.2018.04.019, Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213-231. (2018) Zbl07265270DOI10.1016/j.cnsns.2018.04.019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.