More on exposed points and extremal points of convex sets in and Hilbert space
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 1, page 63-72
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBarov, Stoyu T.. "More on exposed points and extremal points of convex sets in $\mathbb {R}^n$ and Hilbert space." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 63-72. <http://eudml.org/doc/299408>.
@article{Barov2023,
abstract = {Let $\{\mathbb \{V\}\}$ be a separable real Hilbert space, $k \in \{\mathbb \{N\}\}$ with $k < \dim \{\mathbb \{V\}\}$, and let $B$ be convex and closed in $\{\mathbb \{V\}\}$. Let $\{\mathcal \{P\}\}$ be a collection of linear $k$-subspaces of $\{\mathbb \{V\}\}$. A point $w \in B$ is called exposed by $\{\mathcal \{P\}\}$ if there is a $P \in \{\mathcal \{P\}\}$ so that $(w + P) \cap B =\lbrace w\rbrace $. We show that, under some natural conditions, $B$ can be reconstituted as the convex hull of the closure of all its exposed by $\{\mathcal \{P\}\}$ points whenever $\{\mathcal \{P\}\}$ is dense and $G_\{\delta \}$. In addition, we discuss the question when the set of exposed by some $\{\mathcal \{P\}\}$ points forms a $G_\{\delta \}$-set.},
author = {Barov, Stoyu T.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {convex set; extremal point; exposed point; Hilbert space; Grassmann manifold},
language = {eng},
number = {1},
pages = {63-72},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {More on exposed points and extremal points of convex sets in $\mathbb \{R\}^n$ and Hilbert space},
url = {http://eudml.org/doc/299408},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Barov, Stoyu T.
TI - More on exposed points and extremal points of convex sets in $\mathbb {R}^n$ and Hilbert space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 63
EP - 72
AB - Let ${\mathbb {V}}$ be a separable real Hilbert space, $k \in {\mathbb {N}}$ with $k < \dim {\mathbb {V}}$, and let $B$ be convex and closed in ${\mathbb {V}}$. Let ${\mathcal {P}}$ be a collection of linear $k$-subspaces of ${\mathbb {V}}$. A point $w \in B$ is called exposed by ${\mathcal {P}}$ if there is a $P \in {\mathcal {P}}$ so that $(w + P) \cap B =\lbrace w\rbrace $. We show that, under some natural conditions, $B$ can be reconstituted as the convex hull of the closure of all its exposed by ${\mathcal {P}}$ points whenever ${\mathcal {P}}$ is dense and $G_{\delta }$. In addition, we discuss the question when the set of exposed by some ${\mathcal {P}}$ points forms a $G_{\delta }$-set.
LA - eng
KW - convex set; extremal point; exposed point; Hilbert space; Grassmann manifold
UR - http://eudml.org/doc/299408
ER -
References
top- Asplund E., 10.1007/BF02759703, Israel J. Math. 1 (1963), 161–162. MR0161222DOI10.1007/BF02759703
- Barov S. T., Smooth convex bodies in with dense union of facets, Topology Proc. 58 (2021), 71–83. MR4115754
- Barov S., Dijkstra J. J., 10.1090/S0002-9939-09-09804-9, Proc. Amer. Math. Soc. 137 (2009), no. 7, 2425–2435. MR2495278DOI10.1090/S0002-9939-09-09804-9
- Barov S., Dijkstra J. J., 10.1142/S1793525310000252, J. Topol. Anal. 2 (2010), no. 1, 123–143. MR2646993DOI10.1142/S1793525310000252
- Barov S., Dijkstra J. J., 10.4064/fm232-2-2, Fund. Math. 232 (2016), no. 2, 117–129. MR3418884DOI10.4064/fm232-2-2
- Choquet G., Corson H., Klee V., 10.2140/pjm.1966.17.33, Pacific J. Math. 17 (1966), no. 1, 33–43. MR0198176DOI10.2140/pjm.1966.17.33
- Corson H. H., A compact convex set in whose exposed points are of the first category, Proc. Amer. Math. Soc. 16 (1965), no. 5, 1015–1021. MR0180917
- Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Gardner R. J., Geometric Tomography, Encyclopedia Math. Appl., 58, Cambridge University Press, New York, 2006. MR2251886
- Grünbaum B., Convex Polytopes, Pure and Applied Mathematics, 16, Interscience Publishers John Wiley & Sons, New York, 1967. Zbl1033.52001MR0226496
- Kanellopoulos V., 10.1112/S0025579300014807, Mathematika 50 (2003), no. 1–2, 73–85. MR2136363DOI10.1112/S0025579300014807
- Klee V. L., 10.1007/BF01187394, Math. Z. 69 (1958), 90–104. MR0092113DOI10.1007/BF01187394
- Köthe G., Topologische Räume. I, Die Grundlehren der mathematischen Wissenschaften, 107, Springer, Berlin, 1960. MR0130551
- van Mill J., The Infinite-Dimensional Topology of Function Spaces, North-Holland Math. Library, 64, North-Holland Publishing Co., Amsterdam, 2001. Zbl0969.54003MR1851014
- Narici L., Beckenstein E., Topological Vector Spaces, Pure Appl. Math. (Boca Raton), 296, CRC Press, Boca Raton, 2011. MR2723563
- Straszewicz S., 10.4064/fm-24-1-139-143, Fund. Math. 24 (1935), no. 1, 139–143. DOI10.4064/fm-24-1-139-143
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.