On the Banach-Mazur distance between continuous function spaces with scattered boundaries
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 367-393
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRondoš, Jakub. "On the Banach-Mazur distance between continuous function spaces with scattered boundaries." Czechoslovak Mathematical Journal 73.2 (2023): 367-393. <http://eudml.org/doc/299409>.
@article{Rondoš2023,
abstract = {We study the dependence of the Banach-Mazur distance between two subspaces of vector-valued continuous functions on the scattered structure of their boundaries. In the spirit of a result of Y. Gordon (1970), we show that the constant $2$ appearing in the Amir-Cambern theorem may be replaced by $3$ for some class of subspaces. We achieve this by showing that the Banach-Mazur distance of two function spaces is at least 3, if the height of the set of weak peak points of one of the spaces differs from the height of a closed boundary of the second space. Next we show that this estimate can be improved if the considered heights are finite and significantly different. As a corollary, we obtain new results even for the case of $\mathcal \{C\}(K, E)$ spaces.},
author = {Rondoš, Jakub},
journal = {Czechoslovak Mathematical Journal},
keywords = {function space; vector-valued Amir-Cambern theorem; scattered space; Banach-Mazur distance; closed boundary},
language = {eng},
number = {2},
pages = {367-393},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Banach-Mazur distance between continuous function spaces with scattered boundaries},
url = {http://eudml.org/doc/299409},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Rondoš, Jakub
TI - On the Banach-Mazur distance between continuous function spaces with scattered boundaries
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 367
EP - 393
AB - We study the dependence of the Banach-Mazur distance between two subspaces of vector-valued continuous functions on the scattered structure of their boundaries. In the spirit of a result of Y. Gordon (1970), we show that the constant $2$ appearing in the Amir-Cambern theorem may be replaced by $3$ for some class of subspaces. We achieve this by showing that the Banach-Mazur distance of two function spaces is at least 3, if the height of the set of weak peak points of one of the spaces differs from the height of a closed boundary of the second space. Next we show that this estimate can be improved if the considered heights are finite and significantly different. As a corollary, we obtain new results even for the case of $\mathcal {C}(K, E)$ spaces.
LA - eng
KW - function space; vector-valued Amir-Cambern theorem; scattered space; Banach-Mazur distance; closed boundary
UR - http://eudml.org/doc/299409
ER -
References
top- Amir, D., 10.1007/BF03008398, Isr. J. Math. 3 (1965), 205-210. (1965) Zbl0141.31301MR0200708DOI10.1007/BF03008398
- Cambern, M., 10.1090/S0002-9939-1966-0196471-9, Proc. Am. Math. Soc. 17 (1966), 396-400 9999DOI99999 10.1090/S0002-9939-1966-0196471-9 . (1966) Zbl0156.36902MR0196471DOI10.1090/S0002-9939-1966-0196471-9
- Candido, L., 10.4064/sm7857-3-2016, Stud. Math. 232 (2016), 1-6. (2016) Zbl1382.46024MR3493285DOI10.4064/sm7857-3-2016
- Candido, L., On the distortion of a linear embedding of into a space, J. Math. Anal. Appl. 459 (2018), 1201-1207 9999DOI99999 10.1016/j.jmaa.2017.11.039 . (2018) Zbl1383.46020MR3732581
- Candido, L., Galego, E. M., How far is with discrete from spaces?, Fundam. Math. 218 (2012), 151-163 9999DOI99999 10.4064/fm218-2-3 . (2012) Zbl1258.46002MR2957688
- Candido, L., Galego, E. M., Embeddings of spaces into spaces with distortion strictly less than 3, Fundam. Math. 220 (2013), 83-92 9999DOI99999 10.4064/fm220-1-5 . (2013) Zbl1271.46005MR3011771
- Candido, L., Galego, E. M., How does the distortion of linear embedding of into spaces depend on the height of ?, J. Math. Anal. Appl. 402 (2013), 185-190 9999DOI99999 10.1016/j.jmaa.2013.01.017 . (2013) Zbl1271.46006MR3023248
- Candido, L., Galego, E. M., How far is from the other spaces?, Stud. Math. 217 (2013), 123-138 9999DOI99999 10.4064/sm217-2-2 . (2013) Zbl1288.46013MR3117334
- Cengiz, B., On topological isomorphisms of and the cardinal number of , Proc. Am. Math. Soc. 72 (1978), 105-108 9999DOI99999 10.1090/S0002-9939-1978-0493291-0 . (1978) Zbl0397.46022MR0493291
- Cerpa-Torres, M. F., Rincón-Villamizar, M. A., Isomorphisms from extremely regular subspaces of into spaces, Int. J. Math. Math. Sci. 2019 (2019), Article ID 7146073, 7 pages 9999DOI99999 10.1155/2019/7146073 . (2019) Zbl1487.46025MR4047607
- Chu, C.-H., Cohen, H. B., Small-bound isomorphisms of function spaces, Function spaces Lecture Notes in Pure and Applied Mathematics 172. Marcel Dekker, New York (1995), 51-57 9999MR99999 1352220 . (1995) Zbl0888.46029MR1352220
- Cohen, H. B., A bound-two isomorphism between Banach spaces, Proc. Am. Math. Soc. 50 (1975), 215-217 9999DOI99999 10.1090/S0002-9939-1975-0380379-5 . (1975) Zbl0317.46025MR0380379
- Dostál, P., Spurný, J., The minimum principle for affine functions and isomorphisms of continuous affine function spaces, Arch. Math. 114 (2020), 61-70 9999DOI99999 10.1007/s00013-019-01371-0 . (2020) Zbl1440.46003MR4049228
- Fleming, R. J., Jamison, J. E., Isometries on Banach Spaces: Function Spaces, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 129. Chapman Hall/CRC, Boca Raton (2003),9999DOI99999 10.1201/9781420026153 . (2003) Zbl1011.46001MR1957004
- Galego, E. M., Rincón-Villamizar, M. A., Weak forms of Banach-Stone theorem for spaces via the th derivatives of , Bull. Sci. Math. 139 (2015), 880-891 9999DOI99999 10.1016/j.bulsci.2015.04.002 . (2015) Zbl1335.46005MR3429497
- Gordon, Y., On the distance coefficient between isomorphic function spaces, Isr. J. Math. 8 (1970), 391-397 9999DOI99999 10.1007/BF02798685 . (1970) Zbl0205.12401MR0270128
- Hess, H. U., On a theorem of Cambern, Proc. Am. Math. Soc. 71 (1978), 204-206 9999DOI99999 10.1090/S0002-9939-1978-0500490-8 . (1978) Zbl0394.46010MR0500490
- Ludvík, P., Spurný, J., Isomorphisms of spaces of continuous affine functions on compact convex sets with Lindelöf boundaries, Proc. Am. Math. Soc. 139 (2011), 1099-1104 9999DOI99999 10.1090/S0002-9939-2010-10534-8 . (2011) Zbl1225.46005MR2745661
- Lukeš, J., Malý, J., Netuka, I., Spurný, J., Integral Representation Theory: Applications to Convexity, Banach Spaces and Potential Theory, de Gruyter Studies in Mathematics 35. Walter de Gruyter, Berlin (2010),9999DOI99999 10.1515/9783110203219 . (2010) Zbl1216.46003MR2589994
- Morrison, T. J., Functional Analysis: An Introduction to Banach Space Theory, Pure and Applied Mathematics. A Wiley Series of Texts, Monographs and Tracts. Wiley, Chichester (2001),9999MR99999 1885114 . (2001) Zbl1005.46004MR1885114
- Rondoš, J., Spurný, J., Isomorphisms of subspaces of vector-valued continuous functions, Acta Math. Hung. 164 (2021), 200-231 9999DOI99999 10.1007/s10474-020-01107-5 . (2021) Zbl1488.46072MR4264226
- Rondoš, J., Spurný, J., Small-bound isomorphisms of function spaces, J. Aust. Math. Soc. 111 (2021), 412-429 9999DOI99999 10.1017/S1446788720000129 . (2021) Zbl1493.46016MR4337946
- Semadeni, Z., Banach Spaces of Continuous Functions. Vol. 1, Monografie matematyczne 55. PWN - Polish Scientific Publishers, Warszawa (1971). (1971) Zbl0225.46030MR0296671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.