Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management

Hassan Hassanpour; Elham Hosseinzadeh; Mahsa Moodi

Applications of Mathematics (2023)

  • Volume: 68, Issue: 3, page 269-287
  • ISSN: 0862-7940

Abstract

top
The aim of this paper is solving an intuitionistic fuzzy multi-objective linear programming problem containing intuitionistic fuzzy parameters, intuitionistic fuzzy maximization/minimization, and intuitionistic fuzzy constraints. To do this, a linear ranking function is used to convert the intuitionistic fuzzy parameters to crisp ones first. Then, linear membership and non-membership functions are used to manipulate intuitionistic fuzzy maximization/minimization and intuitionistic fuzzy constraints. Then, a multi-objective optimization problem is formulated containing maximization of membership functions and minimization of non-membership functions. To solve this problem, the minimax and weighted sum methods are used. Then, the described procedure is summarized as an algorithm to solve the problem, and a numerical example is solved by the proposed method. Finally, to investigate the capability and performance of the model, a supplier selection problem, which is one of the important applications in supply chain management, is solved by the proposed algorithm.

How to cite

top

Hassanpour, Hassan, Hosseinzadeh, Elham, and Moodi, Mahsa. "Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management." Applications of Mathematics 68.3 (2023): 269-287. <http://eudml.org/doc/299414>.

@article{Hassanpour2023,
abstract = {The aim of this paper is solving an intuitionistic fuzzy multi-objective linear programming problem containing intuitionistic fuzzy parameters, intuitionistic fuzzy maximization/minimization, and intuitionistic fuzzy constraints. To do this, a linear ranking function is used to convert the intuitionistic fuzzy parameters to crisp ones first. Then, linear membership and non-membership functions are used to manipulate intuitionistic fuzzy maximization/minimization and intuitionistic fuzzy constraints. Then, a multi-objective optimization problem is formulated containing maximization of membership functions and minimization of non-membership functions. To solve this problem, the minimax and weighted sum methods are used. Then, the described procedure is summarized as an algorithm to solve the problem, and a numerical example is solved by the proposed method. Finally, to investigate the capability and performance of the model, a supplier selection problem, which is one of the important applications in supply chain management, is solved by the proposed algorithm.},
author = {Hassanpour, Hassan, Hosseinzadeh, Elham, Moodi, Mahsa},
journal = {Applications of Mathematics},
keywords = {multi-objective linear programming; intuitionistic fuzzy set; accuracy function; membership function; non-membership function; supplier selection},
language = {eng},
number = {3},
pages = {269-287},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management},
url = {http://eudml.org/doc/299414},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Hassanpour, Hassan
AU - Hosseinzadeh, Elham
AU - Moodi, Mahsa
TI - Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 269
EP - 287
AB - The aim of this paper is solving an intuitionistic fuzzy multi-objective linear programming problem containing intuitionistic fuzzy parameters, intuitionistic fuzzy maximization/minimization, and intuitionistic fuzzy constraints. To do this, a linear ranking function is used to convert the intuitionistic fuzzy parameters to crisp ones first. Then, linear membership and non-membership functions are used to manipulate intuitionistic fuzzy maximization/minimization and intuitionistic fuzzy constraints. Then, a multi-objective optimization problem is formulated containing maximization of membership functions and minimization of non-membership functions. To solve this problem, the minimax and weighted sum methods are used. Then, the described procedure is summarized as an algorithm to solve the problem, and a numerical example is solved by the proposed method. Finally, to investigate the capability and performance of the model, a supplier selection problem, which is one of the important applications in supply chain management, is solved by the proposed algorithm.
LA - eng
KW - multi-objective linear programming; intuitionistic fuzzy set; accuracy function; membership function; non-membership function; supplier selection
UR - http://eudml.org/doc/299414
ER -

References

top
  1. Ahmadini, A. A. H., Ahmad, F., 10.3934/math.2021269, AIMS Math. 6 (2021), 4556-4580. (2021) MR4220424DOI10.3934/math.2021269
  2. Amid, A., Ghodsypour, S. H., O'Brien, C., 10.1016/j.ijpe.2010.04.044, Int. J. Prod. Econ. 131 (2011), 139-145. (2011) DOI10.1016/j.ijpe.2010.04.044
  3. Angelov, P. P., 10.1016/S0165-0114(96)00009-7, Fuzzy Sets Syst. 86 (1997), 299-306. (1997) Zbl0915.90258MR1454190DOI10.1016/S0165-0114(96)00009-7
  4. Atanassov, K. T., 10.1016/S0165-0114(86)80034-3, Fuzzy Sets Syst. 20 (1986), 87-96. (1986) Zbl0631.03040MR0852871DOI10.1016/S0165-0114(86)80034-3
  5. Bharati, S. K., Singh, S. R., 10.1007/s00500-018-3100-6, Soft Comput. 23 (2019), 77-84. (2019) Zbl1415.90115DOI10.1007/s00500-018-3100-6
  6. Chang, K.-H., 10.1007/s10479-017-2718-6, Ann. Oper. Res. 272 (2019), 139-157. (2019) Zbl1434.90018MR3895140DOI10.1007/s10479-017-2718-6
  7. Ehrgott, M., 10.1007/3-540-27659-9, Springer, Berlin (2005). (2005) Zbl1132.90001MR2143243DOI10.1007/3-540-27659-9
  8. Garg, H., 10.1016/j.asoc.2015.10.040, Appl. Soft Comput. 38 (2016), 988-999. (2016) DOI10.1016/j.asoc.2015.10.040
  9. Kabiraj, A., Nayak, P. K., Raha, S., 10.4236/ijis.2019.91003, Int. J. Intelligence Sci. 9 (2019), 44-58. (2019) DOI10.4236/ijis.2019.91003
  10. Li, D.-F., 10.1016/j.camwa.2010.06.039, Comput. Math. Appl. 60 (2010), 1557-1570. (2010) Zbl1202.91054MR2679124DOI10.1016/j.camwa.2010.06.039
  11. Li, D.-F., 10.1016/j.eswa.2010.02.011, Expert Syst. Appl. 37 (2010), 5939-5945. (2010) DOI10.1016/j.eswa.2010.02.011
  12. Malhotra, R., Bharati, S. K., Intuitionistic fuzzy two stage multiobjective transportation problems, Adv. Theor. Appl. Math. 11 (2016), 305-316. (2016) 
  13. Mohan, S., Kannusamy, A. P., Sidhu, S. K., 10.1111/coin.12435, Comput. Intell. 37 (2021), 852-872. (2021) MR4270699DOI10.1111/coin.12435
  14. Qu, G., Qu, W., Zhang, Z., Wang, J., 10.3233/JIFS-162131, J. Intell. Fuzzy Syst. 33 (2017), 543-553. (2017) Zbl1376.68134DOI10.3233/JIFS-162131
  15. Sakawa, M., 10.1007/978-1-4899-1633-4, Springer, New York (1993). (1993) Zbl0842.90070MR1216139DOI10.1007/978-1-4899-1633-4
  16. Singh, S. K., Yadav, S. P., 10.1016/j.apm.2015.03.064, Appl. Math. Modelling 39 (2015), 4617-4629. (2015) Zbl1443.90067MR3354856DOI10.1016/j.apm.2015.03.064
  17. Singh, S. K., Yadav, S. P., 10.1007/s10479-014-1724-1, Ann. Oper. Res. 243 (2016), 349-363. (2016) Zbl1348.90658MR3529807DOI10.1007/s10479-014-1724-1
  18. Tooranloo, H. S., Iranpour, A., 10.1504/IJPM.2017.086399, Int. J. Procurement Management 10 (2017), 539-554. (2017) DOI10.1504/IJPM.2017.086399
  19. Wan, S., Dong, J., 10.1016/j.jcss.2013.07.007, J. Comput. Syst. Sci. 80 (2014), 237-256. (2014) Zbl1311.68156MR3105919DOI10.1016/j.jcss.2013.07.007
  20. Wan, S., Dong, J., 10.1109/TFUZZ.2021.3064695, IEEE Trans. Fuzzy Syst. 30 (2022), 1698-1711. (2022) DOI10.1109/TFUZZ.2021.3064695
  21. Wan, S.-P., Li, D.-F., 10.1109/TFUZZ.2013.2253107, IEEE Trans. Fuzzy Syst. 22 (2013), 300-312. (2013) DOI10.1109/TFUZZ.2013.2253107
  22. Wan, S.-P., Li, D.-F., 10.1016/j.ins.2015.07.014, Inf. Sci. 325 (2015), 484-503. (2015) Zbl1390.91119MR3392316DOI10.1016/j.ins.2015.07.014
  23. Wan, S.-P., Wang, F., Dong, J.-Y., 10.1016/j.asoc.2015.09.039, Appl. Soft Comput. 38 (2016), 405-422. (2016) DOI10.1016/j.asoc.2015.09.039
  24. Wan, S.-P., Wang, F., Lin, L.-L., Dong, J.-Y., 10.1016/j.knosys.2015.02.027, Knowledge-Based Syst. 82 (2015), 80-94. (2015) DOI10.1016/j.knosys.2015.02.027
  25. Wan, S.-P., Wang, F., Xu, G.-L., Dong, J.-Y., Tang, J., 10.1007/s10700-016-9250-z, Fuzzy Optim. Decis. Mak. 16 (2017), 269-295. (2017) Zbl1428.90090MR3682924DOI10.1007/s10700-016-9250-z
  26. Wei, A.-P., Li, D.-F., Lin, P.-P., Jiang, B.-Q., 10.1007/s00500-020-05265-0, Soft Comput. 25 (2021), 1913-1923. (2021) Zbl7560958DOI10.1007/s00500-020-05265-0
  27. Ye, J., 10.1016/j.eswa.2011.03.059, Expert Syst. Appl. 38 (2011), 11730-11734. (2011) DOI10.1016/j.eswa.2011.03.059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.