Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management
Hassan Hassanpour; Elham Hosseinzadeh; Mahsa Moodi
Applications of Mathematics (2023)
- Volume: 68, Issue: 3, page 269-287
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHassanpour, Hassan, Hosseinzadeh, Elham, and Moodi, Mahsa. "Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management." Applications of Mathematics 68.3 (2023): 269-287. <http://eudml.org/doc/299414>.
@article{Hassanpour2023,
abstract = {The aim of this paper is solving an intuitionistic fuzzy multi-objective linear programming problem containing intuitionistic fuzzy parameters, intuitionistic fuzzy maximization/minimization, and intuitionistic fuzzy constraints. To do this, a linear ranking function is used to convert the intuitionistic fuzzy parameters to crisp ones first. Then, linear membership and non-membership functions are used to manipulate intuitionistic fuzzy maximization/minimization and intuitionistic fuzzy constraints. Then, a multi-objective optimization problem is formulated containing maximization of membership functions and minimization of non-membership functions. To solve this problem, the minimax and weighted sum methods are used. Then, the described procedure is summarized as an algorithm to solve the problem, and a numerical example is solved by the proposed method. Finally, to investigate the capability and performance of the model, a supplier selection problem, which is one of the important applications in supply chain management, is solved by the proposed algorithm.},
author = {Hassanpour, Hassan, Hosseinzadeh, Elham, Moodi, Mahsa},
journal = {Applications of Mathematics},
keywords = {multi-objective linear programming; intuitionistic fuzzy set; accuracy function; membership function; non-membership function; supplier selection},
language = {eng},
number = {3},
pages = {269-287},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management},
url = {http://eudml.org/doc/299414},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Hassanpour, Hassan
AU - Hosseinzadeh, Elham
AU - Moodi, Mahsa
TI - Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 269
EP - 287
AB - The aim of this paper is solving an intuitionistic fuzzy multi-objective linear programming problem containing intuitionistic fuzzy parameters, intuitionistic fuzzy maximization/minimization, and intuitionistic fuzzy constraints. To do this, a linear ranking function is used to convert the intuitionistic fuzzy parameters to crisp ones first. Then, linear membership and non-membership functions are used to manipulate intuitionistic fuzzy maximization/minimization and intuitionistic fuzzy constraints. Then, a multi-objective optimization problem is formulated containing maximization of membership functions and minimization of non-membership functions. To solve this problem, the minimax and weighted sum methods are used. Then, the described procedure is summarized as an algorithm to solve the problem, and a numerical example is solved by the proposed method. Finally, to investigate the capability and performance of the model, a supplier selection problem, which is one of the important applications in supply chain management, is solved by the proposed algorithm.
LA - eng
KW - multi-objective linear programming; intuitionistic fuzzy set; accuracy function; membership function; non-membership function; supplier selection
UR - http://eudml.org/doc/299414
ER -
References
top- Ahmadini, A. A. H., Ahmad, F., 10.3934/math.2021269, AIMS Math. 6 (2021), 4556-4580. (2021) MR4220424DOI10.3934/math.2021269
- Amid, A., Ghodsypour, S. H., O'Brien, C., 10.1016/j.ijpe.2010.04.044, Int. J. Prod. Econ. 131 (2011), 139-145. (2011) DOI10.1016/j.ijpe.2010.04.044
- Angelov, P. P., 10.1016/S0165-0114(96)00009-7, Fuzzy Sets Syst. 86 (1997), 299-306. (1997) Zbl0915.90258MR1454190DOI10.1016/S0165-0114(96)00009-7
- Atanassov, K. T., 10.1016/S0165-0114(86)80034-3, Fuzzy Sets Syst. 20 (1986), 87-96. (1986) Zbl0631.03040MR0852871DOI10.1016/S0165-0114(86)80034-3
- Bharati, S. K., Singh, S. R., 10.1007/s00500-018-3100-6, Soft Comput. 23 (2019), 77-84. (2019) Zbl1415.90115DOI10.1007/s00500-018-3100-6
- Chang, K.-H., 10.1007/s10479-017-2718-6, Ann. Oper. Res. 272 (2019), 139-157. (2019) Zbl1434.90018MR3895140DOI10.1007/s10479-017-2718-6
- Ehrgott, M., 10.1007/3-540-27659-9, Springer, Berlin (2005). (2005) Zbl1132.90001MR2143243DOI10.1007/3-540-27659-9
- Garg, H., 10.1016/j.asoc.2015.10.040, Appl. Soft Comput. 38 (2016), 988-999. (2016) DOI10.1016/j.asoc.2015.10.040
- Kabiraj, A., Nayak, P. K., Raha, S., 10.4236/ijis.2019.91003, Int. J. Intelligence Sci. 9 (2019), 44-58. (2019) DOI10.4236/ijis.2019.91003
- Li, D.-F., 10.1016/j.camwa.2010.06.039, Comput. Math. Appl. 60 (2010), 1557-1570. (2010) Zbl1202.91054MR2679124DOI10.1016/j.camwa.2010.06.039
- Li, D.-F., 10.1016/j.eswa.2010.02.011, Expert Syst. Appl. 37 (2010), 5939-5945. (2010) DOI10.1016/j.eswa.2010.02.011
- Malhotra, R., Bharati, S. K., Intuitionistic fuzzy two stage multiobjective transportation problems, Adv. Theor. Appl. Math. 11 (2016), 305-316. (2016)
- Mohan, S., Kannusamy, A. P., Sidhu, S. K., 10.1111/coin.12435, Comput. Intell. 37 (2021), 852-872. (2021) MR4270699DOI10.1111/coin.12435
- Qu, G., Qu, W., Zhang, Z., Wang, J., 10.3233/JIFS-162131, J. Intell. Fuzzy Syst. 33 (2017), 543-553. (2017) Zbl1376.68134DOI10.3233/JIFS-162131
- Sakawa, M., 10.1007/978-1-4899-1633-4, Springer, New York (1993). (1993) Zbl0842.90070MR1216139DOI10.1007/978-1-4899-1633-4
- Singh, S. K., Yadav, S. P., 10.1016/j.apm.2015.03.064, Appl. Math. Modelling 39 (2015), 4617-4629. (2015) Zbl1443.90067MR3354856DOI10.1016/j.apm.2015.03.064
- Singh, S. K., Yadav, S. P., 10.1007/s10479-014-1724-1, Ann. Oper. Res. 243 (2016), 349-363. (2016) Zbl1348.90658MR3529807DOI10.1007/s10479-014-1724-1
- Tooranloo, H. S., Iranpour, A., 10.1504/IJPM.2017.086399, Int. J. Procurement Management 10 (2017), 539-554. (2017) DOI10.1504/IJPM.2017.086399
- Wan, S., Dong, J., 10.1016/j.jcss.2013.07.007, J. Comput. Syst. Sci. 80 (2014), 237-256. (2014) Zbl1311.68156MR3105919DOI10.1016/j.jcss.2013.07.007
- Wan, S., Dong, J., 10.1109/TFUZZ.2021.3064695, IEEE Trans. Fuzzy Syst. 30 (2022), 1698-1711. (2022) DOI10.1109/TFUZZ.2021.3064695
- Wan, S.-P., Li, D.-F., 10.1109/TFUZZ.2013.2253107, IEEE Trans. Fuzzy Syst. 22 (2013), 300-312. (2013) DOI10.1109/TFUZZ.2013.2253107
- Wan, S.-P., Li, D.-F., 10.1016/j.ins.2015.07.014, Inf. Sci. 325 (2015), 484-503. (2015) Zbl1390.91119MR3392316DOI10.1016/j.ins.2015.07.014
- Wan, S.-P., Wang, F., Dong, J.-Y., 10.1016/j.asoc.2015.09.039, Appl. Soft Comput. 38 (2016), 405-422. (2016) DOI10.1016/j.asoc.2015.09.039
- Wan, S.-P., Wang, F., Lin, L.-L., Dong, J.-Y., 10.1016/j.knosys.2015.02.027, Knowledge-Based Syst. 82 (2015), 80-94. (2015) DOI10.1016/j.knosys.2015.02.027
- Wan, S.-P., Wang, F., Xu, G.-L., Dong, J.-Y., Tang, J., 10.1007/s10700-016-9250-z, Fuzzy Optim. Decis. Mak. 16 (2017), 269-295. (2017) Zbl1428.90090MR3682924DOI10.1007/s10700-016-9250-z
- Wei, A.-P., Li, D.-F., Lin, P.-P., Jiang, B.-Q., 10.1007/s00500-020-05265-0, Soft Comput. 25 (2021), 1913-1923. (2021) Zbl7560958DOI10.1007/s00500-020-05265-0
- Ye, J., 10.1016/j.eswa.2011.03.059, Expert Syst. Appl. 38 (2011), 11730-11734. (2011) DOI10.1016/j.eswa.2011.03.059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.