Linear preserver of Ferrers vectors
Leila Fazlpar; Ali Armandnejad
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1189-1200
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFazlpar, Leila, and Armandnejad, Ali. "Linear preserver of $n\times 1$ Ferrers vectors." Czechoslovak Mathematical Journal 73.4 (2023): 1189-1200. <http://eudml.org/doc/299425>.
@article{Fazlpar2023,
abstract = {Let $A=[a_\{ij\}]_\{m\times n\}$ be an $m\times n$ matrix of zeros and ones. The matrix $A$ is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1,1)$-entry. We characterize all linear maps perserving the set of $n\times 1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring $\mathbb \{Z\}_2$. Also, we have achieved the number of these linear maps in each case.},
author = {Fazlpar, Leila, Armandnejad, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {Ferrers matrix; linear preserver; Boolean semiring},
language = {eng},
number = {4},
pages = {1189-1200},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear preserver of $n\times 1$ Ferrers vectors},
url = {http://eudml.org/doc/299425},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Fazlpar, Leila
AU - Armandnejad, Ali
TI - Linear preserver of $n\times 1$ Ferrers vectors
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1189
EP - 1200
AB - Let $A=[a_{ij}]_{m\times n}$ be an $m\times n$ matrix of zeros and ones. The matrix $A$ is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1,1)$-entry. We characterize all linear maps perserving the set of $n\times 1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring $\mathbb {Z}_2$. Also, we have achieved the number of these linear maps in each case.
LA - eng
KW - Ferrers matrix; linear preserver; Boolean semiring
UR - http://eudml.org/doc/299425
ER -
References
top- Beasley, L. B., 10.21136/CMJ.2019.0092-18, Czech. Math. J. 69 (2019), 1123-1131. (2019) Zbl07144881MR4039626DOI10.21136/CMJ.2019.0092-18
- Kuich, W., Salomaa, A., 10.1007/978-3-642-69959-7, EATCS Monographs on Theoretical Computer Science 5. Springer, Berlin (1986). (1986) Zbl0582.68002MR0817983DOI10.1007/978-3-642-69959-7
- Motlaghian, S. M., Armandnejad, A., Hall, F. J., 10.1007/s10587-016-0296-4, Czech. Math. J. 66 (2016), 847-858. (2016) Zbl1413.15051MR3556871DOI10.1007/s10587-016-0296-4
- Motlaghian, S. M., Armandnejad, A., Hall, F. J., 10.1007/s41980-018-0063-4, Bull. Iran. Math. Soc. 44 (2018), 969-976. (2018) Zbl1407.15003MR3846382DOI10.1007/s41980-018-0063-4
- Sirasuntorn, N., Sombatboriboon, S., Udomsub, N., Inversion of matrices over Boolean semirings, Thai J. Math. 7 (2009), 105-113. (2009) Zbl1201.15002MR2540688
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.