Kernels of Toeplitz operators on the Bergman space

Young Joo Lee

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1119-1130
  • ISSN: 0011-4642

Abstract

top
A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.

How to cite

top

Lee, Young Joo. "Kernels of Toeplitz operators on the Bergman space." Czechoslovak Mathematical Journal 73.4 (2023): 1119-1130. <http://eudml.org/doc/299427>.

@article{Lee2023,
abstract = {A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.},
author = {Lee, Young Joo},
journal = {Czechoslovak Mathematical Journal},
keywords = {Toeplitz operator; Bergman space},
language = {eng},
number = {4},
pages = {1119-1130},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Kernels of Toeplitz operators on the Bergman space},
url = {http://eudml.org/doc/299427},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Lee, Young Joo
TI - Kernels of Toeplitz operators on the Bergman space
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1119
EP - 1130
AB - A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.
LA - eng
KW - Toeplitz operator; Bergman space
UR - http://eudml.org/doc/299427
ER -

References

top
  1. Chen, Y., Izuchi, K. J., Lee, Y. J., 10.1016/j.jmaa.2018.06.034, J. Math. Anal. Appl. 466 (2018), 1043-1059. (2018) Zbl06897108MR3818158DOI10.1016/j.jmaa.2018.06.034
  2. Choe, B. R., Lee, Y. J., 10.1307/mmj/1030132367, Mich. Math. J. 46 (1999), 163-174. (1999) Zbl0969.47023MR1682896DOI10.1307/mmj/1030132367
  3. Coburn, L. A., 10.1307/mmj/1031732778, Mich. Math. J. 13 (1966), 285-288. (1966) Zbl0173.42904MR0201969DOI10.1307/mmj/1031732778
  4. Guo, K., Zhao, X., Zheng, D., The spectral picture of Bergman Toeplitz operators with harmonic polynomial symbols, Available at https://arxiv.org/abs/2007.07532 (2023), 21 pages. (2023) MR4666991
  5. Lee, Y. J., 10.1016/j.jmaa.2014.01.020, J. Math. Anal. Appl. 414 (2014), 237-242. (2014) Zbl1308.47037MR3165305DOI10.1016/j.jmaa.2014.01.020
  6. McDonald, G., Sundberg, C., 10.1512/iumj.1979.28.28042, Indiana Univ. Math. J. 28 (1979), 595-611. (1979) Zbl0439.47022MR0542947DOI10.1512/iumj.1979.28.28042
  7. Perälä, A., Virtanen, J. A., 10.7153/oam-05-06, Oper. Matrices 5 (2011), 97-106. (2011) Zbl1262.47046MR2798798DOI10.7153/oam-05-06
  8. Sundberg, C., Zheng, D., 10.1512/iumj.2010.59.3799, Indiana Univ. Math. J. 59 (2010), 385-394. (2010) Zbl1195.47019MR2666483DOI10.1512/iumj.2010.59.3799
  9. Vukotić, D., 10.1007/s00020-004-1312-x, Integr. Equations Oper. Theory 50 (2004), 565-567. (2004) Zbl1062.47034MR2105965DOI10.1007/s00020-004-1312-x
  10. Zhu, K., 10.1090/surv/138, Mathematical Surveys and Monographs 138. AMS, Providence (2007). (2007) Zbl1123.47001MR2311536DOI10.1090/surv/138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.