Kernels of Toeplitz operators on the Bergman space
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1119-1130
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLee, Young Joo. "Kernels of Toeplitz operators on the Bergman space." Czechoslovak Mathematical Journal 73.4 (2023): 1119-1130. <http://eudml.org/doc/299427>.
@article{Lee2023,
abstract = {A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.},
author = {Lee, Young Joo},
journal = {Czechoslovak Mathematical Journal},
keywords = {Toeplitz operator; Bergman space},
language = {eng},
number = {4},
pages = {1119-1130},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Kernels of Toeplitz operators on the Bergman space},
url = {http://eudml.org/doc/299427},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Lee, Young Joo
TI - Kernels of Toeplitz operators on the Bergman space
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1119
EP - 1130
AB - A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.
LA - eng
KW - Toeplitz operator; Bergman space
UR - http://eudml.org/doc/299427
ER -
References
top- Chen, Y., Izuchi, K. J., Lee, Y. J., 10.1016/j.jmaa.2018.06.034, J. Math. Anal. Appl. 466 (2018), 1043-1059. (2018) Zbl06897108MR3818158DOI10.1016/j.jmaa.2018.06.034
- Choe, B. R., Lee, Y. J., 10.1307/mmj/1030132367, Mich. Math. J. 46 (1999), 163-174. (1999) Zbl0969.47023MR1682896DOI10.1307/mmj/1030132367
- Coburn, L. A., 10.1307/mmj/1031732778, Mich. Math. J. 13 (1966), 285-288. (1966) Zbl0173.42904MR0201969DOI10.1307/mmj/1031732778
- Guo, K., Zhao, X., Zheng, D., The spectral picture of Bergman Toeplitz operators with harmonic polynomial symbols, Available at https://arxiv.org/abs/2007.07532 (2023), 21 pages. (2023) MR4666991
- Lee, Y. J., 10.1016/j.jmaa.2014.01.020, J. Math. Anal. Appl. 414 (2014), 237-242. (2014) Zbl1308.47037MR3165305DOI10.1016/j.jmaa.2014.01.020
- McDonald, G., Sundberg, C., 10.1512/iumj.1979.28.28042, Indiana Univ. Math. J. 28 (1979), 595-611. (1979) Zbl0439.47022MR0542947DOI10.1512/iumj.1979.28.28042
- Perälä, A., Virtanen, J. A., 10.7153/oam-05-06, Oper. Matrices 5 (2011), 97-106. (2011) Zbl1262.47046MR2798798DOI10.7153/oam-05-06
- Sundberg, C., Zheng, D., 10.1512/iumj.2010.59.3799, Indiana Univ. Math. J. 59 (2010), 385-394. (2010) Zbl1195.47019MR2666483DOI10.1512/iumj.2010.59.3799
- Vukotić, D., 10.1007/s00020-004-1312-x, Integr. Equations Oper. Theory 50 (2004), 565-567. (2004) Zbl1062.47034MR2105965DOI10.1007/s00020-004-1312-x
- Zhu, K., 10.1090/surv/138, Mathematical Surveys and Monographs 138. AMS, Providence (2007). (2007) Zbl1123.47001MR2311536DOI10.1090/surv/138
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.