The new iteration methods for solving absolute value equations
Applications of Mathematics (2023)
- Volume: 68, Issue: 1, page 109-122
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAli, Rashid, and Pan, Kejia. "The new iteration methods for solving absolute value equations." Applications of Mathematics 68.1 (2023): 109-122. <http://eudml.org/doc/299429>.
@article{Ali2023,
abstract = {Many problems in operations research, management science, and engineering fields lead to the solution of absolute value equations. In this study, we propose two new iteration methods for solving absolute value equations $ Ax-|x| = b$, where $A \in \mathbb \{R\}^\{n\times n\}$ is an $M$-matrix or strictly diagonally dominant matrix, $b \in \mathbb \{R\}^\{n\}$ and $x \in \mathbb \{R\}^\{n\}$ is an unknown solution vector. Furthermore, we discuss the convergence of the proposed two methods under suitable assumptions. Numerical experiments are given to verify the feasibility, robustness and effectiveness of our methods.},
author = {Ali, Rashid, Pan, Kejia},
journal = {Applications of Mathematics},
keywords = {absolute value equation; iteration method; matrix splitting; linear complementarity problem; numerical experiment},
language = {eng},
number = {1},
pages = {109-122},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The new iteration methods for solving absolute value equations},
url = {http://eudml.org/doc/299429},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Ali, Rashid
AU - Pan, Kejia
TI - The new iteration methods for solving absolute value equations
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 109
EP - 122
AB - Many problems in operations research, management science, and engineering fields lead to the solution of absolute value equations. In this study, we propose two new iteration methods for solving absolute value equations $ Ax-|x| = b$, where $A \in \mathbb {R}^{n\times n}$ is an $M$-matrix or strictly diagonally dominant matrix, $b \in \mathbb {R}^{n}$ and $x \in \mathbb {R}^{n}$ is an unknown solution vector. Furthermore, we discuss the convergence of the proposed two methods under suitable assumptions. Numerical experiments are given to verify the feasibility, robustness and effectiveness of our methods.
LA - eng
KW - absolute value equation; iteration method; matrix splitting; linear complementarity problem; numerical experiment
UR - http://eudml.org/doc/299429
ER -
References
top- Abdallah, L., Haddou, M., Migot, T., 10.1016/j.cam.2017.06.019, J. Comput. Appl. Math. 327 (2018), 196-207. (2018) Zbl1370.90297MR3683155DOI10.1016/j.cam.2017.06.019
- Ahn, B. H., 10.1007/BF00935545, J. Optim. Theory Appl. 33 (1981), 175-187. (1981) Zbl0422.90079MR613891DOI10.1007/BF00935545
- Bai, Z.-Z., 10.1002/nla.680, Numer. Linear Algebra Appl. 17 (2010), 917-933. (2010) Zbl1240.65181MR2759601DOI10.1002/nla.680
- Cruz, J. Y. Bello, Ferreira, O. P., Prudente, L. F., 10.1007/s10589-016-9837-x, Comput. Optim. Appl. 65 (2016), 93-108. (2016) Zbl1353.90155MR3529136DOI10.1007/s10589-016-9837-x
- Caccetta, L., Qu, B., Zhou, G., 10.1007/s10589-009-9242-9, Comput. Optim. Appl. 48 (2011), 45-58. (2011) Zbl1230.90195MR2762957DOI10.1007/s10589-009-9242-9
- Chen, C., Yu, D., Han, D., Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations, Available at https://arxiv.org/abs/2001.05781 (2021), 23 pages. (2021) MR3957497
- Cottle, R. W., Pang, J.-S., Stone, R. E., 10.1137/1.9780898719000, Classics in Applied Mathematics 60. SIAM, Philadelphia (2009). (2009) Zbl1192.90001MR3396730DOI10.1137/1.9780898719000
- Dehghan, M., Hajarian, M., 10.1016/j.orl.2009.01.013, Oper. Res. Lett. 37 (2009), 219-223. (2009) Zbl1167.90655MR2528386DOI10.1016/j.orl.2009.01.013
- Dehghan, M., Shirilord, A., 10.1016/j.apnum.2020.08.001, Appl. Numer. Math. 158 (2020), 425-438. (2020) Zbl1451.65048MR4140578DOI10.1016/j.apnum.2020.08.001
- Dong, X., Shao, X.-H., Shen, H.-L., 10.1016/j.apnum.2020.05.013, Appl. Numer. Math. 156 (2020), 410-421. (2020) Zbl1435.65049MR4103787DOI10.1016/j.apnum.2020.05.013
- Edalatpour, V., Hezari, D., Salkuyeh, D. Khojasteh, 10.1016/j.amc.2016.08.020, Appl. Math. Comput. 293 (2017), 156-167. (2017) Zbl1411.65068MR3549660DOI10.1016/j.amc.2016.08.020
- Feng, J., Liu, S., 10.1186/s40064-016-2720-5, SpringerPlus 5 (2016), Article ID 1042, 10 pages. (2016) MR3531811DOI10.1186/s40064-016-2720-5
- Feng, J., Liu, S., 10.1186/s13660-019-1969-y, J. Inequal. Appl. 39 (2019), Article ID 39, 8 pages. (2019) MR3915073DOI10.1186/s13660-019-1969-y
- Gu, X.-M., Huang, T.-Z., Li, H.-B., Wang, S.-F., Li, L., 10.11948/2017082, J. Appl. Anal. Comput. 7 (2017), 1336-1356. (2017) Zbl1451.65058MR3723924DOI10.11948/2017082
- Haghani, F. K., 10.1007/s10957-015-0712-1, J. Optim. Theory Appl. 166 (2015), 619-625. (2015) Zbl1391.65106MR3371392DOI10.1007/s10957-015-0712-1
- Hashemi, F., Ketabchi, S., 10.3934/naco.2019029, Numer. Algebra Control Optim. 10 (2020), 13-21. (2020) Zbl07199000MR4155105DOI10.3934/naco.2019029
- Hu, S.-L., Huang, Z.-H., 10.1007/s11590-009-0169-y, Optim. Lett. 4 (2010), 417-424. (2010) Zbl1202.90251MR2653789DOI10.1007/s11590-009-0169-y
- Ke, Y., 10.1016/j.aml.2019.07.021, Appl. Math. Lett. 99 (2020), Article ID 105990, 7 pages. (2020) Zbl07112056MR3989672DOI10.1016/j.aml.2019.07.021
- Ke, Y.-F., Ma, C.-F., 10.1016/j.amc.2017.05.035, Appl. Math. Comput. 311 (2017), 195-202. (2017) Zbl1426.65048MR3658069DOI10.1016/j.amc.2017.05.035
- Li, C.-X., 10.1142/S0219876217500165, Int. J. Comput. Methods 14 (2017), Article ID 1750016, 12 pages. (2017) Zbl1404.65052MR3613077DOI10.1142/S0219876217500165
- Li, S.-G., Jiang, H., Cheng, L.-Z., Liao, X.-K., 10.1016/j.cam.2010.12.005, J. Comput. Appl. Math. 235 (2011), 2904-2912. (2011) Zbl1211.65072MR2771274DOI10.1016/j.cam.2010.12.005
- Mangasarian, O. L., 10.1007/BF01268170, J. Optim. Theory Appl. 22 (1977), 465-485. (1977) Zbl0341.65049MR458831DOI10.1007/BF01268170
- Mangasarian, O. L., 10.1007/s11590-006-0005-6, Optim. Lett. 1 (2007), 3-8. (2007) Zbl1149.90098MR2357603DOI10.1007/s11590-006-0005-6
- Mangasarian, O. L., 10.1007/s11590-008-0094-5, Optim. Lett. 3 (2009), 101-108. (2009) Zbl1154.90599MR2453508DOI10.1007/s11590-008-0094-5
- Mangasarian, O. L., 10.1007/s11590-013-0656-z, Optim. Lett. 8 (2014), 1529-1534. (2014) Zbl1288.90109MR3182582DOI10.1007/s11590-013-0656-z
- Mangasarian, O. L., Meyer, R. R., 10.1016/j.laa.2006.05.004, Linear Algebra Appl. 419 (2006), 359-367. (2006) Zbl1172.15302MR2277975DOI10.1016/j.laa.2006.05.004
- Mansoori, A., Erfanian, M., 10.1016/j.cam.2017.09.032, J. Comput. Appl. Math. 333 (2018), 28-35. (2018) Zbl1380.65107MR3739937DOI10.1016/j.cam.2017.09.032
- Mansoori, A., Eshaghnezhad, M., Effati, S., 10.1109/TCSII.2017.2750065, IEEE Trans. Circuits Syst., II Exp. Briefs 65 (2017), 391-395. (2017) DOI10.1109/TCSII.2017.2750065
- Mao, X., Wangi, X., Edalatpanah, S. A., Fallah, M., 10.1109/ACCESS.2019.2920485, IEEE Access 7 (2019), 73649-73655. (2019) DOI10.1109/ACCESS.2019.2920485
- Mezzadri, F., 10.1016/j.aml.2020.106462, Appl. Math. Lett. 107 (2020), Article ID 106462, 6 pages. (2020) Zbl07210351MR4099341DOI10.1016/j.aml.2020.106462
- Mezzadri, F., Galligani, E., 10.1007/s11075-019-00677-y, Numer. Algorithms 83 (2020), 201-219. (2020) Zbl1431.65087MR4056825DOI10.1007/s11075-019-00677-y
- Miao, X.-H., Yang, J.-T., Saheya, B., Chen, J.-S., 10.1016/j.apnum.2017.04.012, Appl. Numer. Math. 120 (2017), 82-96. (2017) Zbl1370.65024MR3669724DOI10.1016/j.apnum.2017.04.012
- Miao, S.-X., Zhang, D., 10.1186/s13660-018-1789-5, J. Inequal. Appl. 2018 (2018), Article ID 195, 12 pages. (2018) MR3833836DOI10.1186/s13660-018-1789-5
- Moosaei, H., Ketabchi, S., Jafari, H., 10.1007/s13370-014-0281-8, Afr. Mat. 26 (2015), 1221-1228. (2015) Zbl1327.90105MR3415145DOI10.1007/s13370-014-0281-8
- Nguyen, C. T., Saheya, B., Chang, Y.-L., Chen, J.-S., 10.1016/j.apnum.2018.08.019, Appl. Numer. Math. 135 (2019), 206-227. (2019) Zbl1411.90338MR3860558DOI10.1016/j.apnum.2018.08.019
- Noor, M. A., Noor, K. I., Batool, S., On generalized absolute value equations, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80 (2018), 63-70. (2018) Zbl1424.90220MR3887289
- Prokopyev, O., 10.1007/s10589-007-9158-1, Comput. Optim. Appl. 44 (2009), 363-372. (2009) Zbl1181.90263MR2570597DOI10.1007/s10589-007-9158-1
- Rohn, J., 10.1080/0308108042000220686, Linear Multilinear Algebra 52 (2004), 421-426. (2004) Zbl1070.15002MR2102197DOI10.1080/0308108042000220686
- Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R., 10.1007/s11590-012-0560-y, Optim. Lett. 8 (2014), 35-44. (2014) Zbl1316.90052MR3152897DOI10.1007/s11590-012-0560-y
- Saheya, B., Yu, C.-H., Chen, J.-S., 10.1007/s12190-016-1065-0, J. Appl. Math. Comput. 56 (2018), 131-149. (2018) Zbl1390.26020MR3770379DOI10.1007/s12190-016-1065-0
- Salkuyeh, D. K., 10.1007/s11590-014-0727-9, Optim. Lett. 8 (2014), 2191-2202. (2014) Zbl1335.90102MR3279597DOI10.1007/s11590-014-0727-9
- Varga, R. S., 10.1007/978-3-642-05156-2, Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1962). (1962) Zbl0133.08602MR0158502DOI10.1007/978-3-642-05156-2
- Wang, H. J., Cao, D. X., Liu, H., Qiu, L., 10.1007/s10092-016-0204-1, Calcolo 54 (2017), 669-683. (2017) Zbl1378.65125MR3694720DOI10.1007/s10092-016-0204-1
- Wu, S. L., Li, C. X., 10.3934/math.2020332, AIMS Math. 5 (2020), 5171-5183. (2020) MR4147504DOI10.3934/math.2020332
- Zamani, M., Hladík, M., 10.1007/s11590-020-01691-z, Optim. Lett. 15 (2021), 2141-2154. (2021) Zbl07383574MR4300030DOI10.1007/s11590-020-01691-z
- Zhang, M., Huang, Z.-H., Li, Y.-F., 10.1007/s40305-014-0067-6, J. Oper. Res. Soc. China 3 (2015), 31-51. (2015) Zbl1351.90138MR3321038DOI10.1007/s40305-014-0067-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.