Global attractors for a tropical climate model
Pigong Han; Keke Lei; Chenggang Liu; Xuewen Wang
Applications of Mathematics (2023)
- Volume: 68, Issue: 3, page 329-356
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHan, Pigong, et al. "Global attractors for a tropical climate model." Applications of Mathematics 68.3 (2023): 329-356. <http://eudml.org/doc/299451>.
@article{Han2023,
abstract = {This paper is devoted to the global attractors of the tropical climate model. We first establish the global well-posedness of the system. Then by studying the existence of bounded absorbing sets, the global attractor is constructed. The estimates of the Hausdorff dimension and of the fractal dimension of the global attractor are obtained in the end.},
author = {Han, Pigong, Lei, Keke, Liu, Chenggang, Wang, Xuewen},
journal = {Applications of Mathematics},
keywords = {tropical climate model; global attractor; Hausdorff dimension; fractal dimension},
language = {eng},
number = {3},
pages = {329-356},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global attractors for a tropical climate model},
url = {http://eudml.org/doc/299451},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Han, Pigong
AU - Lei, Keke
AU - Liu, Chenggang
AU - Wang, Xuewen
TI - Global attractors for a tropical climate model
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 329
EP - 356
AB - This paper is devoted to the global attractors of the tropical climate model. We first establish the global well-posedness of the system. Then by studying the existence of bounded absorbing sets, the global attractor is constructed. The estimates of the Hausdorff dimension and of the fractal dimension of the global attractor are obtained in the end.
LA - eng
KW - tropical climate model; global attractor; Hausdorff dimension; fractal dimension
UR - http://eudml.org/doc/299451
ER -
References
top- Babin, A. V., Vishik, M. I., 10.1070/RM1983v038n04ABEH004209, Russ. Math. Surv. 38 (1983), 151-213 translation from Usp. Mat. Nauk 38 1983 133-187. (1983) Zbl0541.35038MR0710119DOI10.1070/RM1983v038n04ABEH004209
- Bae, H.-O., Jin, B. J., 10.1017/S0308210500003966, Proc. R. Soc. Edinb., Sect. A, Math. 135 (2005), 461-477. (2005) Zbl1076.35089MR2153432DOI10.1017/S0308210500003966
- Bae, H.-O., Jin, B. J., 10.1016/j.jde.2004.09.011, J. Differ. Equations 209 (2005), 365-391. (2005) Zbl1062.35058MR2110209DOI10.1016/j.jde.2004.09.011
- Brandolese, L., 10.1007/s00208-004-0533-2, Math. Ann. 329 (2004), 685-706. (2004) Zbl1080.35062MR2076682DOI10.1007/s00208-004-0533-2
- Caraballo, T., Łukaszewicz, G., Real, J., 10.1016/j.crma.2005.12.015, C. R., Math., Acad. Sci. Paris 342 (2006), 263-268. (2006) Zbl1085.37054MR2196010DOI10.1016/j.crma.2005.12.015
- Chepyzhov, V. V., Vishik, M. I., 10.1090/coll/049, Colloquium Publications. American Mathematical Society 49. AMS, Providence (2002). (2002) Zbl0986.35001MR1868930DOI10.1090/coll/049
- Dong, B., Wang, W., Wu, J., Zhang, H., 10.3934/dcdsb.2018102, Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 211-229. (2019) Zbl1406.35270MR3932724DOI10.3934/dcdsb.2018102
- Dong, B.-Q., Li, C., Xu, X., Ye, Z., 10.1088/1361-6544/ac0d44, Nonlinearity 34 (2021), 5662-5686. (2021) Zbl1473.35438MR4281486DOI10.1088/1361-6544/ac0d44
- Dong, B.-Q., Wu, J., Ye, Z., 10.1007/s00332-018-9495-5, J. Nonlinear Sci. 29 (2019), 511-550. (2019) Zbl1415.86028MR3927105DOI10.1007/s00332-018-9495-5
- Frierson, D. M. W., Majda, A. J., Pauluis, O. M., 10.4310/CMS.2004.v2.n4.a3, Commun. Math. Sci. 2 (2004), 591-626. (2004) Zbl1160.86303MR2119930DOI10.4310/CMS.2004.v2.n4.a3
- Galdi, G. P., 10.1007/978-0-387-09620-9, Springer Monographs in Mathematics. Springer, New York (2011). (2011) Zbl1245.35002MR2808162DOI10.1007/978-0-387-09620-9
- Ghidaglia, J. M., Temam, R., Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl., IX. Sér. 66 (1987), 273-319. (1987) Zbl0572.35071MR0913856
- Gong, D., Song, H., Zhong, C., 10.1063/1.3227652, J. Math. Phys. 50 (2009), Article ID 102706, 10 pages. (2009) Zbl1283.35009MR2573118DOI10.1063/1.3227652
- He, C., Xin, Z., 10.1017/S0308210500001013, Proc. R. Soc. Edinb., Sect. A, Math. 131 (2001), 597-619. (2001) Zbl0982.35083MR1838503DOI10.1017/S0308210500001013
- He, C., Zhou, D., 10.1002/mma.2880, Math. Methods Appl. Sci. 37 (2014), 1191-1205. (2014) Zbl1293.35245MR3198765DOI10.1002/mma.2880
- Ladyzhenskaya, O. A., The dynamical system that is generated by the Navier-Stokes equations, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 27 (1972), 91-115 Russian. (1972) Zbl0327.35064MR0328378
- Lu, S., Wu, H., Zhong, C., 10.3934/dcds.2005.13.701, Discrete Contin. Dyn. Syst. 13 (2005), 701-719. (2005) Zbl1083.35094MR2153139DOI10.3934/dcds.2005.13.701
- Schonbek, M. E., 10.1007/BF00752111, Arch. Ration. Mech. Anal. 88 (1985), 209-222. (1985) Zbl0602.76031MR0775190DOI10.1007/BF00752111
- Sermange, M., Temam, R., 10.1002/cpa.3160360506, Commun. Pure Appl. Math. 36 (1983), 635-664. (1983) Zbl0524.76099MR0716200DOI10.1002/cpa.3160360506
- Ye, Z., 10.1016/j.jmaa.2016.08.053, J. Math. Anal. Appl. 446 (2017), 307-321 9999DOI99999 10.1016/j.jmaa.2016.08.053 . (2017) Zbl1353.35097MR3554729DOI10.1016/j.jmaa.2016.08.053
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.