Relative Auslander bijection in n -exangulated categories

Jian He; Jing He; Panyue Zhou

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 525-552
  • ISSN: 0011-4642

Abstract

top
The aim of this article is to study the relative Auslander bijection in n -exangulated categories. More precisely, we introduce the notion of generalized Auslander-Reiten-Serre duality and exploit a bijection triangle, which involves the generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor. As an application, this result generalizes the work by Zhao in extriangulated categories.

How to cite

top

He, Jian, He, Jing, and Zhou, Panyue. "Relative Auslander bijection in $n$-exangulated categories." Czechoslovak Mathematical Journal 73.2 (2023): 525-552. <http://eudml.org/doc/299455>.

@article{He2023,
abstract = {The aim of this article is to study the relative Auslander bijection in $n$-exangulated categories. More precisely, we introduce the notion of generalized Auslander-Reiten-Serre duality and exploit a bijection triangle, which involves the generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor. As an application, this result generalizes the work by Zhao in extriangulated categories.},
author = {He, Jian, He, Jing, Zhou, Panyue},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-exangulated category; generalized Auslander-Reiten-Serre duality; restricted Auslander bijection},
language = {eng},
number = {2},
pages = {525-552},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relative Auslander bijection in $n$-exangulated categories},
url = {http://eudml.org/doc/299455},
volume = {73},
year = {2023},
}

TY - JOUR
AU - He, Jian
AU - He, Jing
AU - Zhou, Panyue
TI - Relative Auslander bijection in $n$-exangulated categories
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 525
EP - 552
AB - The aim of this article is to study the relative Auslander bijection in $n$-exangulated categories. More precisely, we introduce the notion of generalized Auslander-Reiten-Serre duality and exploit a bijection triangle, which involves the generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor. As an application, this result generalizes the work by Zhao in extriangulated categories.
LA - eng
KW - $n$-exangulated category; generalized Auslander-Reiten-Serre duality; restricted Auslander bijection
UR - http://eudml.org/doc/299455
ER -

References

top
  1. Auslander, M., Functors and morphisms determined by objects, Representation Theory of Algebras Lecture Notes in Pure Applied Mathematics 37. Marcel Dekker, New York (1978), 1-244. (1978) Zbl0383.16015MR0480688
  2. Auslander, M., Reiten, I., 10.1080/00927877508822046, Commun. Algebra 3 (1975), 239-294. (1975) Zbl0331.16027MR0379599DOI10.1080/00927877508822046
  3. Auslander, M., Reiten, I., 10.1080/00927877708822180, Commun. Algebra 5 (1977), 443-518. (1977) Zbl0396.16007MR0439881DOI10.1080/00927877708822180
  4. Chen, X.-W., 10.4310/ARKIV.2017.v55.n1.a2, Ark. Mat. 55 (2017), 41-59. (2017) Zbl1388.16018MR3711141DOI10.4310/ARKIV.2017.v55.n1.a2
  5. Dräxler, P., Reiten, I., Smalø, S. O., Solberg, Ø., 10.1090/S0002-9947-99-02322-3, Trans. Am. Math. Soc. 351 (1999), 647-682. (1999) Zbl0916.16002MR1608305DOI10.1090/S0002-9947-99-02322-3
  6. Geiss, C., Keller, B., Oppermann, S., 10.1515/CRELLE.2011.177, J. Reine Angew. Math. 675 (2013), 101-120. (2013) Zbl1271.18013MR3021448DOI10.1515/CRELLE.2011.177
  7. He, J., He, J., Zhou, P., Auslander-Reiten-Serre duality for n -exangulated categories, Available at https://arxiv.org/abs/2112.00981 (2021), 24 pages. (2021) 
  8. He, J., He, J., Zhou, P., Higher Auslander-Reiten sequences via morphisms determined by objects, Available at https://arxiv.org/abs/2111.06522 (2021), 28 pages. (2021) MR4585887
  9. He, J., Hu, J., Zhang, D., Zhou, P., 10.4310/ARKIV.2022.v60.n2.a8, Ark. Mat. 60 (2022), 365-385. (2022) Zbl7610639MR4500371DOI10.4310/ARKIV.2022.v60.n2.a8
  10. He, J., Zhou, P., n -exact categories arising from n -exangulated categories, Available at https://arxiv.org/abs/2109.12954 (2021), 16 pages. (2021) 
  11. Herschend, M., Liu, Y., Nakaoka, H., 10.1016/j.jalgebra.2020.11.017, J. Algebra 570 (2021), 531-586. (2021) Zbl07290700MR4188310DOI10.1016/j.jalgebra.2020.11.017
  12. Herschend, M., Liu, Y., Nakaoka, H., 10.1016/j.jalgebra.2021.11.042, J. Algebra 594 (2022), 636-684. (2022) Zbl07459388MR4355116DOI10.1016/j.jalgebra.2021.11.042
  13. Hu, J., Zhang, D., Zhou, P., 10.1016/j.jalgebra.2020.09.041, J. Algebra 568 (2021), 1-21. (2021) Zbl1458.18006MR4166049DOI10.1016/j.jalgebra.2020.09.041
  14. Iyama, O., Nakaoka, H., Palu, Y., Auslander-Reiten theory in extriangulated categories, Available at https://arxiv.org/abs/1805.03776v2 (2019), 40 pages. (2019) 
  15. Jasso, G., 10.1007/s00209-016-1619-8, Math. Z. 283 (2016), 703-759. (2016) Zbl1356.18005MR3519980DOI10.1007/s00209-016-1619-8
  16. Jiao, P., 10.1142/S0219498818502274, J. Algebra Appl. 17 (2018), Article ID 1850227, 14 pages. (2018) Zbl1407.16014MR3895199DOI10.1142/S0219498818502274
  17. Jiao, P., 10.1007/s11464-020-0814-4, Front. Math. China 15 (2020), 115-125. (2020) Zbl1457.16014MR4074348DOI10.1007/s11464-020-0814-4
  18. Liu, Y., Zhou, P., 10.1016/j.jalgebra.2020.03.036, J. Algebra 559 (2020), 161-183. (2020) Zbl1448.18022MR4096714DOI10.1016/j.jalgebra.2020.03.036
  19. Nakaoka, H., Palu, Y., Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. (2019) Zbl1451.18021MR3931945
  20. Ringel, C. M., 10.1007/s13373-013-0042-2, Bull. Math. Sci. 3 (2013), 409-484. (2013) Zbl1405.16030MR3128038DOI10.1007/s13373-013-0042-2
  21. Zhao, T., Relative Auslander bijection in extriangulated categories, Available at www.researchgate.net/publication/367217942 (2021). (2021) MR4586909
  22. Zhao, T., Tan, L., Huang, Z., 10.1016/j.jalgebra.2020.04.021, J. Algebra 559 (2020), 346-378. (2020) Zbl1440.18024MR4097908DOI10.1016/j.jalgebra.2020.04.021
  23. Zhao, T., Tan, L., Huang, Z., 10.1016/j.jalgebra.2020.12.043, J. Algebra 574 (2021), 117-153. (2021) Zbl1459.18007MR4210995DOI10.1016/j.jalgebra.2020.12.043
  24. Zheng, Q., Wei, J., 10.1142/S1005386719000506, Algebra Colloq. 26 (2019), 689-720. (2019) Zbl1427.18006MR4032973DOI10.1142/S1005386719000506

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.