Some extensions of Chu's formulas and further combinatorial identities

Said Zriaa; Mohammed Mouçouf

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 3, page 397-408
  • ISSN: 0862-7959

Abstract

top
We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.

How to cite

top

Zriaa, Said, and Mouçouf, Mohammed. "Some extensions of Chu's formulas and further combinatorial identities." Mathematica Bohemica 149.3 (2024): 397-408. <http://eudml.org/doc/299456>.

@article{Zriaa2024,
abstract = {We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.},
author = {Zriaa, Said, Mouçouf, Mohammed},
journal = {Mathematica Bohemica},
keywords = {partial fraction decomposition; polynomial; combinatorial identity; harmonic number; generalized harmonic number; complete Bell polynomial},
language = {eng},
number = {3},
pages = {397-408},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some extensions of Chu's formulas and further combinatorial identities},
url = {http://eudml.org/doc/299456},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Zriaa, Said
AU - Mouçouf, Mohammed
TI - Some extensions of Chu's formulas and further combinatorial identities
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 397
EP - 408
AB - We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.
LA - eng
KW - partial fraction decomposition; polynomial; combinatorial identity; harmonic number; generalized harmonic number; complete Bell polynomial
UR - http://eudml.org/doc/299456
ER -

References

top
  1. Alzer, H., Chapman, R., On Boole's formula for factorials, Australas. J. Comb. 59 (2014), 333-336. (2014) Zbl1296.05013MR3245408
  2. Andrews, G. E., 10.1016/0012-365X(75)90001-1, Discrete Math. 11 (1975), 97-106. (1975) Zbl0301.05006MR0389609DOI10.1016/0012-365X(75)90001-1
  3. Anglani, R., Barile, M., Two very short proofs of a combinatorial identity, Integers 5 (2005), Article ID A18, 3 pages. (2005) Zbl1102.11013MR2192237
  4. Batir, N., 10.1142/S179304211750097X, Int. J. Number Theory 13 (2017), 1695-1709. (2017) Zbl1376.11065MR3667490DOI10.1142/S179304211750097X
  5. Belbahri, K., 10.1016/j.aam.2010.01.010, Adv. Appl. Math. 45 (2010), 548-563. (2010) Zbl1226.05049MR2679931DOI10.1016/j.aam.2010.01.010
  6. Boole, G., Calculus of Finite Differences, Chelsea, New York (1958). (1958) Zbl0084.07701MR0115025
  7. Choi, J., 10.1155/2014/501906, Abst. Appl. Anal. 2014 (2014), Article ID 501906, 10 pages. (2014) Zbl1422.11033MR3246339DOI10.1155/2014/501906
  8. Chu, W., 10.1016/j.jat.2005.07.008, J. Approximation Theory 137 (2005), 42-56. (2005) Zbl1082.41014MR2179622DOI10.1016/j.jat.2005.07.008
  9. Comtet, L., 10.1007/978-94-010-2196-8, D. Reidel, Dordrecht (1974). (1974) Zbl0283.05001MR0460128DOI10.1007/978-94-010-2196-8
  10. Driver, K., Prodinger, H., Schneider, C., Weideman, J. A. C., 10.1007/s11139-006-6503-4, Ramanujan J. 11 (2006), 139-158. (2006) Zbl1102.41015MR2267670DOI10.1007/s11139-006-6503-4
  11. Elsner, C., On recurrence formulae for sums involving binomial coefficients, Fibonacci Q. 43 (2005), 31-45. (2005) Zbl1136.40301MR2129118
  12. Flajolet, P., Vepstas, L., 10.1016/j.cam.2007.07.040, J. Comput. Appl. Math. 220 (2008), 58-73. (2008) Zbl1147.11046MR2444154DOI10.1016/j.cam.2007.07.040
  13. Gonzáles, L., 10.1080/00207390903398382, Int. J. Math. Educ. Sci. Technol. 41 (2010), 359-372. (2010) Zbl1292.97051MR2786266DOI10.1080/00207390903398382
  14. Gould, H. W., Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, Henry W. Gould, Morgantown (1972). (1972) Zbl0241.05011MR0354401
  15. Gould, H. W., 10.2307/2320064, Am. Math. Mon. 85 (1978), 450-467. (1978) Zbl0397.10055MR0480057DOI10.2307/2320064
  16. Graham, R. L., Knuth, D. E., Patashnik, O., Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, Reading (1989). (1989) Zbl0668.00003MR1001562
  17. Holland, F., 10.33232/BIMS.0089.25.28, Ir. Math. Soc. Bull. 89 (2022), 25-28. (2022) Zbl1493.05031MR4467082DOI10.33232/BIMS.0089.25.28
  18. Ismail, M. E. H., Stanton, D., 10.1007/s00026-012-0158-1, Ann. Comb. 16 (2012), 755-771. (2012) Zbl1256.05021MR3000443DOI10.1007/s00026-012-0158-1
  19. Karatsuba, E. A., 10.1134/S0032946015040079, Probl. Inf. Transm. 51 (2015), 378-390. (2015) Zbl1387.11094MR3449580DOI10.1134/S0032946015040079
  20. Karatsuba, E. A., 10.48550/arXiv.1805.02076, Available at https://arxiv.org/abs/1805.02076 (2018), 19 pages. (2018) MR4429764DOI10.48550/arXiv.1805.02076
  21. Karatsuba, E. A., 10.1134/S0001434619010176, Math. Notes 105 (2019), 145-147. (2019) Zbl1416.11034MR3894458DOI10.1134/S0001434619010176
  22. Katsuura, H., 10.1080/07468342.2009.11922375, Coll. Math. J. 40 (2009), 275-278. (2009) MR2548966DOI10.1080/07468342.2009.11922375
  23. Krantz, S. G., Parks, H. R., 10.1007/978-0-8176-8134-0, Birkhäuser Advances Texts. Basler Lehrbücher. Birkhäuser, Boston (2002). (2002) Zbl1015.26030MR1916029DOI10.1007/978-0-8176-8134-0
  24. Krivokolesko, V. P., Integral representations for linearly convex polyhedra and some combinatorial identities, J. Sib. Fed. Univ., Math. Phys. 2 (2009), 176-188. (2009) Zbl07324709
  25. Mouçouf, M., Zriaa, S., 10.1080/03081087.2021.1940807, Linear Multilinear Algebra 70 (2022), 5973-5986. (2022) Zbl1510.15009MR4525262DOI10.1080/03081087.2021.1940807
  26. Nakata, T., Another probabilistic proof of a binomial identity, Fibonacci Q. 52 (2014), 139-140. (2014) Zbl1296.05016MR3214377
  27. Peterson, J., 10.4169/amer.math.monthly.120.06.558, Am. Math. Mon. 120 (2013), 558-562. (2013) Zbl1273.05012MR3063121DOI10.4169/amer.math.monthly.120.06.558
  28. Pohoata, C., Boole's formula as a consequence of Lagrange's interpolating polynomial theorem, Integers 8 (2008), Article ID A23, 2 pages. (2008) Zbl1210.05008MR2425621
  29. Quaintance, J., 10.1142/9821, World Scientific, Singapore (2015). (2015) Zbl1343.11002MR3409093DOI10.1142/9821
  30. Sarmanov, O. V., Sevast'yanov, B. A., Tarakanov, V. E., 10.1007/BF01366921, Math. Notes 11 (1972), 77-80. (1972) Zbl0261.05012MR0289321DOI10.1007/BF01366921
  31. Sofo, A., Srivastava, H. M., 10.1007/s11139-010-9228-3, Ramanujan. J. 25 (2011), 93-113. (2011) Zbl1234.11022MR2787293DOI10.1007/s11139-010-9228-3
  32. Spivey, M. Z., 10.4169/amer.math.monthly.123.2.175, Am. Math. Mon. 123 (2016), 175-180. (2016) Zbl1339.05029MR3470509DOI10.4169/amer.math.monthly.123.2.175
  33. Strehl, V., 10.1016/0012-365X(94)00118-3, Discrete. Math. 136 (1994), 309-346. (1994) Zbl0823.33003MR1313292DOI10.1016/0012-365X(94)00118-3
  34. Vellaisamy, P., 10.1080/00031305.2015.1056381, Am. Stat. 69 (2015), 241-243. (2015) Zbl07671735MR3391644DOI10.1080/00031305.2015.1056381
  35. Weideman, J. A. C., 10.2989/16073600509486135, Quaest. Math. 28 (2005), 375-390. (2005) Zbl1085.41011MR2164379DOI10.2989/16073600509486135
  36. Wituła, R., Hetmaniok, E., S{ł}ota, D., Gawrońska, N., 10.12732/ijpam.v85i1.14, Int. J. Pure Appl. Math. 85 (2013), 171-178. (2013) DOI10.12732/ijpam.v85i1.14
  37. Zhu, J.-M., Luo, Q.-M., 10.1186/s13662-021-03433-6, Adv. Difference Equ. 2021 (2021), Article ID 274, 8 pages. (2021) Zbl1494.05012MR4268818DOI10.1186/s13662-021-03433-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.