On wsq-primary ideals
Emel Aslankarayiğit Uğurlu; El Mehdi Bouba; Ünsal Tekir; Suat Koç
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 415-429
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAslankarayiğit Uğurlu, Emel, et al. "On wsq-primary ideals." Czechoslovak Mathematical Journal 73.2 (2023): 415-429. <http://eudml.org/doc/299457>.
@article{AslankarayiğitUğurlu2023,
abstract = {We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity and $Q$ a proper ideal of $R$. The proper ideal $Q$ is said to be a weakly strongly quasi-primary ideal if whenever $0\ne ab\in Q$ for some $a,b\in R$, then $a^\{2\}\in Q$ or $b\in \sqrt\{Q\}.$ Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.},
author = {Aslankarayiğit Uğurlu, Emel, Bouba, El Mehdi, Tekir, Ünsal, Koç, Suat},
journal = {Czechoslovak Mathematical Journal},
keywords = {primary ideal; weakly primary ideal; quasi-primary ideal; weakly 2-prime ideal; strongly quasi-primary ideal},
language = {eng},
number = {2},
pages = {415-429},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On wsq-primary ideals},
url = {http://eudml.org/doc/299457},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Aslankarayiğit Uğurlu, Emel
AU - Bouba, El Mehdi
AU - Tekir, Ünsal
AU - Koç, Suat
TI - On wsq-primary ideals
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 415
EP - 429
AB - We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity and $Q$ a proper ideal of $R$. The proper ideal $Q$ is said to be a weakly strongly quasi-primary ideal if whenever $0\ne ab\in Q$ for some $a,b\in R$, then $a^{2}\in Q$ or $b\in \sqrt{Q}.$ Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.
LA - eng
KW - primary ideal; weakly primary ideal; quasi-primary ideal; weakly 2-prime ideal; strongly quasi-primary ideal
UR - http://eudml.org/doc/299457
ER -
References
top- Almahdi, F. A. A., Tamekkante, M., Mamouni, A., 10.1080/00927872.2020.1749645, Commun. Algebra 48 (2020), 3838-3845. (2020) Zbl1451.13007MR4124662DOI10.1080/00927872.2020.1749645
- Anderson, D. F., (eds.), D. E. Dobbs, Zero-Dimensional Commutative Rings, Lecture Notes in Pure and Applied Mathematics. 171. Marcel Dekker, New York (1995). (1995) Zbl0872.00033MR1335699
- Anderson, D. D., Smith, E., Weakly prime ideals, Houston J. Math. 29 (2003), 831-840. (2003) Zbl1086.13500MR2045656
- Anderson, D. D., Winders, M., 10.1216/JCA-2009-1-1-3, J. Commut. Algebra 1 (2009), 3-56. (2009) Zbl1194.13002MR2462381DOI10.1216/JCA-2009-1-1-3
- Atiyah, M. F., Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, Reading (1969). (1969) Zbl0175.03601MR0242802
- Badawi, A., 10.1017/S0004972700039344, Bull. Aust. Math. Soc. 75 (2007), 417-429. (2007) Zbl1120.13004MR2331019DOI10.1017/S0004972700039344
- Badawi, A., Sonmez, D., Yesilot, G., 10.1142/S1005386718000287, Algebra Colloq. 25 (2018), 387-398. (2018) Zbl1401.13007MR3843092DOI10.1142/S1005386718000287
- Badawi, A., Tekir, U., Yetkin, E., 10.4134/JKMS.2015.52.1.097, J. Korean Math. Soc. 52 (2015), 97-111. (2015) Zbl1315.13008MR3299372DOI10.4134/JKMS.2015.52.1.097
- Beddani, C., Messirdi, W., 10.1142/S0219498816500511, J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. (2016) Zbl1338.13038MR3454713DOI10.1142/S0219498816500511
- Călugăreanu, G., 10.1142/S0219498816501826, J. Algebra Appl. 15 (2016), Article ID 1650182, 9 pages. (2016) Zbl1397.16037MR3575972DOI10.1142/S0219498816501826
- Chen, J., 10.1007/s13366-020-00507-6, Beitr. Algebra Geom. 62 (2021), 587-593. (2021) Zbl1472.13004MR4290331DOI10.1007/s13366-020-00507-6
- Atani, S. Ebrahimi, Farzalipour, F., 10.1515/GMJ.2005.423, Georgian Math. J. 12 (2005), 423-429. (2005) Zbl1086.13501MR2174944DOI10.1515/GMJ.2005.423
- Huckaba, J. A., Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). (1988) Zbl0637.13001MR0938741
- Koç, S., 10.1080/00927872.2021.1897133, Commun. Algebra 49 (2021), 3387-3397. (2021) Zbl1470.13004MR4283155DOI10.1080/00927872.2021.1897133
- Koc, S., Tekir, U., Ulucak, G., 10.4134/BKMS.b180522, Bull. Korean Math. Soc. 56 (2019), 729-743. (2019) Zbl1419.13040MR3960633DOI10.4134/BKMS.b180522
- Larsen, M. D., McCarthy, P. J., Multiplicative Theory of Ideals, Pure and Applied Mathematics 43. Academic Press, New York (1971). (1971) Zbl0237.13002MR0414528
- Lee, T.-K., Zhou, Y., Reduced modules, Rings, Modules, Algebras and Abelian Groups Lecture Notes in Pure and Applied Mathematics 236. Marcel Dekker, New York (2004), 365-377. (2004) Zbl1075.16003MR2050725
- Pakala, J. V., Shores, T. S., 10.2140/pjm.1981.97.197, Pac. J. Math. 97 (1981), 197-201. (1981) Zbl0491.13002MR0638188DOI10.2140/pjm.1981.97.197
- Redmond, S. P., 10.1081/AGB-120022801, Commun. Algebra 31 (2003), 4425-4443. (2003) Zbl1020.13001MR1995544DOI10.1081/AGB-120022801
- Satyanarayana, M., 10.7146/math.scand.a-10818, Math. Scand. 20 (1967), 52-54. (1967) Zbl0146.26204MR0212005DOI10.7146/math.scand.a-10818
- Neumann, J. von, 10.1073/pnas.22.12.70, Proc. Natl. Acad. Sci. USA 22 (1936), 707-713. (1936) Zbl0015.38802DOI10.1073/pnas.22.12.70
- Wang, F., Kim, H., 10.1007/978-981-10-3337-7, Algebra and Applications 22. Springer, Singapore (2016). (2016) Zbl1367.13001MR3587977DOI10.1007/978-981-10-3337-7
- z, E. Yıldı, Ersoy, B. A., Tekir, Ü., Koç, S., 10.1080/00927872.2020.1831006, Commun. Algebra 49 (2021), 1212-1224. (2021) Zbl1477.13012MR4219872DOI10.1080/00927872.2020.1831006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.