On wsq-primary ideals

Emel Aslankarayiğit Uğurlu; El Mehdi Bouba; Ünsal Tekir; Suat Koç

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 415-429
  • ISSN: 0011-4642

Abstract

top
We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R . The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 a b Q for some a , b R , then a 2 Q or b Q . Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.

How to cite

top

Aslankarayiğit Uğurlu, Emel, et al. "On wsq-primary ideals." Czechoslovak Mathematical Journal 73.2 (2023): 415-429. <http://eudml.org/doc/299457>.

@article{AslankarayiğitUğurlu2023,
abstract = {We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity and $Q$ a proper ideal of $R$. The proper ideal $Q$ is said to be a weakly strongly quasi-primary ideal if whenever $0\ne ab\in Q$ for some $a,b\in R$, then $a^\{2\}\in Q$ or $b\in \sqrt\{Q\}.$ Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.},
author = {Aslankarayiğit Uğurlu, Emel, Bouba, El Mehdi, Tekir, Ünsal, Koç, Suat},
journal = {Czechoslovak Mathematical Journal},
keywords = {primary ideal; weakly primary ideal; quasi-primary ideal; weakly 2-prime ideal; strongly quasi-primary ideal},
language = {eng},
number = {2},
pages = {415-429},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On wsq-primary ideals},
url = {http://eudml.org/doc/299457},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Aslankarayiğit Uğurlu, Emel
AU - Bouba, El Mehdi
AU - Tekir, Ünsal
AU - Koç, Suat
TI - On wsq-primary ideals
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 415
EP - 429
AB - We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity and $Q$ a proper ideal of $R$. The proper ideal $Q$ is said to be a weakly strongly quasi-primary ideal if whenever $0\ne ab\in Q$ for some $a,b\in R$, then $a^{2}\in Q$ or $b\in \sqrt{Q}.$ Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.
LA - eng
KW - primary ideal; weakly primary ideal; quasi-primary ideal; weakly 2-prime ideal; strongly quasi-primary ideal
UR - http://eudml.org/doc/299457
ER -

References

top
  1. Almahdi, F. A. A., Tamekkante, M., Mamouni, A., 10.1080/00927872.2020.1749645, Commun. Algebra 48 (2020), 3838-3845. (2020) Zbl1451.13007MR4124662DOI10.1080/00927872.2020.1749645
  2. Anderson, D. F., (eds.), D. E. Dobbs, Zero-Dimensional Commutative Rings, Lecture Notes in Pure and Applied Mathematics. 171. Marcel Dekker, New York (1995). (1995) Zbl0872.00033MR1335699
  3. Anderson, D. D., Smith, E., Weakly prime ideals, Houston J. Math. 29 (2003), 831-840. (2003) Zbl1086.13500MR2045656
  4. Anderson, D. D., Winders, M., 10.1216/JCA-2009-1-1-3, J. Commut. Algebra 1 (2009), 3-56. (2009) Zbl1194.13002MR2462381DOI10.1216/JCA-2009-1-1-3
  5. Atiyah, M. F., Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, Reading (1969). (1969) Zbl0175.03601MR0242802
  6. Badawi, A., 10.1017/S0004972700039344, Bull. Aust. Math. Soc. 75 (2007), 417-429. (2007) Zbl1120.13004MR2331019DOI10.1017/S0004972700039344
  7. Badawi, A., Sonmez, D., Yesilot, G., 10.1142/S1005386718000287, Algebra Colloq. 25 (2018), 387-398. (2018) Zbl1401.13007MR3843092DOI10.1142/S1005386718000287
  8. Badawi, A., Tekir, U., Yetkin, E., 10.4134/JKMS.2015.52.1.097, J. Korean Math. Soc. 52 (2015), 97-111. (2015) Zbl1315.13008MR3299372DOI10.4134/JKMS.2015.52.1.097
  9. Beddani, C., Messirdi, W., 10.1142/S0219498816500511, J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. (2016) Zbl1338.13038MR3454713DOI10.1142/S0219498816500511
  10. Călugăreanu, G., 10.1142/S0219498816501826, J. Algebra Appl. 15 (2016), Article ID 1650182, 9 pages. (2016) Zbl1397.16037MR3575972DOI10.1142/S0219498816501826
  11. Chen, J., 10.1007/s13366-020-00507-6, Beitr. Algebra Geom. 62 (2021), 587-593. (2021) Zbl1472.13004MR4290331DOI10.1007/s13366-020-00507-6
  12. Atani, S. Ebrahimi, Farzalipour, F., 10.1515/GMJ.2005.423, Georgian Math. J. 12 (2005), 423-429. (2005) Zbl1086.13501MR2174944DOI10.1515/GMJ.2005.423
  13. Huckaba, J. A., Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). (1988) Zbl0637.13001MR0938741
  14. Koç, S., 10.1080/00927872.2021.1897133, Commun. Algebra 49 (2021), 3387-3397. (2021) Zbl1470.13004MR4283155DOI10.1080/00927872.2021.1897133
  15. Koc, S., Tekir, U., Ulucak, G., 10.4134/BKMS.b180522, Bull. Korean Math. Soc. 56 (2019), 729-743. (2019) Zbl1419.13040MR3960633DOI10.4134/BKMS.b180522
  16. Larsen, M. D., McCarthy, P. J., Multiplicative Theory of Ideals, Pure and Applied Mathematics 43. Academic Press, New York (1971). (1971) Zbl0237.13002MR0414528
  17. Lee, T.-K., Zhou, Y., Reduced modules, Rings, Modules, Algebras and Abelian Groups Lecture Notes in Pure and Applied Mathematics 236. Marcel Dekker, New York (2004), 365-377. (2004) Zbl1075.16003MR2050725
  18. Pakala, J. V., Shores, T. S., 10.2140/pjm.1981.97.197, Pac. J. Math. 97 (1981), 197-201. (1981) Zbl0491.13002MR0638188DOI10.2140/pjm.1981.97.197
  19. Redmond, S. P., 10.1081/AGB-120022801, Commun. Algebra 31 (2003), 4425-4443. (2003) Zbl1020.13001MR1995544DOI10.1081/AGB-120022801
  20. Satyanarayana, M., 10.7146/math.scand.a-10818, Math. Scand. 20 (1967), 52-54. (1967) Zbl0146.26204MR0212005DOI10.7146/math.scand.a-10818
  21. Neumann, J. von, 10.1073/pnas.22.12.70, Proc. Natl. Acad. Sci. USA 22 (1936), 707-713. (1936) Zbl0015.38802DOI10.1073/pnas.22.12.70
  22. Wang, F., Kim, H., 10.1007/978-981-10-3337-7, Algebra and Applications 22. Springer, Singapore (2016). (2016) Zbl1367.13001MR3587977DOI10.1007/978-981-10-3337-7
  23. z, E. Yıldı, Ersoy, B. A., Tekir, Ü., Koç, S., 10.1080/00927872.2020.1831006, Commun. Algebra 49 (2021), 1212-1224. (2021) Zbl1477.13012MR4219872DOI10.1080/00927872.2020.1831006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.