Tensor products of higher almost split sequences in subcategories

Xiaojian Lu; Deren Luo

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1151-1174
  • ISSN: 0011-4642

Abstract

top
We introduce the algebras satisfying the condition. If , are algebras satisfying the , condition, respectively, we give a construction of -almost split sequences in some subcategories of by tensor products and mapping cones. Moreover, we prove that the tensor product algebra satisfies the condition for some integers , ; this construction unifies and extends the work of A. Pasquali (2017), (2019).

How to cite

top

Lu, Xiaojian, and Luo, Deren. "Tensor products of higher almost split sequences in subcategories." Czechoslovak Mathematical Journal 73.4 (2023): 1151-1174. <http://eudml.org/doc/299462>.

@article{Lu2023,
abstract = {We introduce the algebras satisfying the $(\mathcal \{B\},n)$ condition. If $\Lambda $, $\Gamma $ are algebras satisfying the $(\mathcal \{B\},n)$, $(\mathcal \{E\},m)$ condition, respectively, we give a construction of $(m+n)$-almost split sequences in some subcategories $(\mathcal \{B\}\otimes \mathcal \{E\})^\{(i_0, j_0)\}$ of $~\@mod \;(\Lambda \otimes \Gamma )$ by tensor products and mapping cones. Moreover, we prove that the tensor product algebra $\Lambda \otimes \Gamma $ satisfies the $((\mathcal \{B\}\otimes \mathcal \{E\})^\{(i_0, j_0)\},n+m)$ condition for some integers $i_0$, $j_0$; this construction unifies and extends the work of A. Pasquali (2017), (2019).},
author = {Lu, Xiaojian, Luo, Deren},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-representation finite algebra; higher almost split sequence; tensor product; mapping cone},
language = {eng},
number = {4},
pages = {1151-1174},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Tensor products of higher almost split sequences in subcategories},
url = {http://eudml.org/doc/299462},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Lu, Xiaojian
AU - Luo, Deren
TI - Tensor products of higher almost split sequences in subcategories
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1151
EP - 1174
AB - We introduce the algebras satisfying the $(\mathcal {B},n)$ condition. If $\Lambda $, $\Gamma $ are algebras satisfying the $(\mathcal {B},n)$, $(\mathcal {E},m)$ condition, respectively, we give a construction of $(m+n)$-almost split sequences in some subcategories $(\mathcal {B}\otimes \mathcal {E})^{(i_0, j_0)}$ of $~\@mod \;(\Lambda \otimes \Gamma )$ by tensor products and mapping cones. Moreover, we prove that the tensor product algebra $\Lambda \otimes \Gamma $ satisfies the $((\mathcal {B}\otimes \mathcal {E})^{(i_0, j_0)},n+m)$ condition for some integers $i_0$, $j_0$; this construction unifies and extends the work of A. Pasquali (2017), (2019).
LA - eng
KW - $n$-representation finite algebra; higher almost split sequence; tensor product; mapping cone
UR - http://eudml.org/doc/299462
ER -

References

top
  1. Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  2. Auslander, M., Reiten, I., 10.1080/00927877508822046, Commun. Algebra 3 (1975), 239-294. (1975) Zbl0331.16027MR0379599DOI10.1080/00927877508822046
  3. Auslander, M., Reiten, I., 10.1080/00927877708822180, Commun. Algebra 5 (1977), 443-518. (1977) Zbl0396.16007MR0439881DOI10.1080/00927877708822180
  4. Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
  5. Cartan, H., Eilenberg, S., Homological Algebra, Princeton Mathematical Series 19. Princeton University Press, Princeton (1956). (1956) Zbl0075.24305MR0077480
  6. Darpö, E., Iyama, O., 10.1016/j.aim.2019.106932, Adv. Math. 362 (2020), Article ID 106932, 50 pages. (2020) Zbl1481.16013MR4052555DOI10.1016/j.aim.2019.106932
  7. Gelfand, S. I., Manin, Y. I., 10.1007/978-3-662-03220-6, Springer Monographs in Mathematics. Springer, Berlin (2003). (2003) Zbl1006.18001MR1950475DOI10.1007/978-3-662-03220-6
  8. Guo, J. Y., 10.1016/j.jalgebra.2015.08.006, J. Algebra 453 (2016), 400-428. (2016) Zbl1376.16015MR3465360DOI10.1016/j.jalgebra.2015.08.006
  9. Guo, J. Y., Lu, X., Luo, D., type constructions in higher representation theory, Available at https://arxiv.org/abs/1908.06546v3 (2022), 26 pages. (2022) 
  10. Herschend, M., Iyama, O., 10.1112/blms/bdq101, Bull. Lond. Math. Soc. 43 (2011), 449-466. (2011) Zbl1275.16012MR2820136DOI10.1112/blms/bdq101
  11. Herschend, M., Iyama, O., Oppermann, S., 10.1016/j.aim.2013.09.023, Adv. Math. 252 (2014), 292-342. (2014) Zbl1339.16020MR3144232DOI10.1016/j.aim.2013.09.023
  12. Iyama, O., 10.1016/j.aim.2006.06.003, Adv. Math. 210 (2007), 51-82. (2007) Zbl1115.16006MR2298820DOI10.1016/j.aim.2006.06.003
  13. Iyama, O., 10.1016/j.aim.2006.06.002, Adv. Math. 210 (2007), 22-50. (2007) Zbl1115.16005MR2298819DOI10.1016/j.aim.2006.06.002
  14. Iyama, O., 10.4171/062-1/8, Trends in Representation Theory of Algebras and Related Topics EMS Series of Congress Reports. EMS, Zürich (2008), 349-397. (2008) Zbl1206.16011MR2484730DOI10.4171/062-1/8
  15. Iyama, O., 10.1016/j.aim.2010.03.004, Adv. Math. 226 (2011), 1-61. (2011) Zbl1233.16014MR2735750DOI10.1016/j.aim.2010.03.004
  16. Iyama, O., Oppermann, S., 10.1090/S0002-9947-2011-05312-2, Trans. Am. Math. Soc. 363 (2011), 6575-6614. (2011) Zbl1264.16015MR2833569DOI10.1090/S0002-9947-2011-05312-2
  17. Lawrence, J., 10.1090/S0002-9939-1976-0409551-3, Proc. Am. Math. Soc. 58 (1976), 22-24. (1976) Zbl0336.16008MR0409551DOI10.1090/S0002-9939-1976-0409551-3
  18. Pasquali, A., 10.1016/j.jpaa.2016.07.010, J. Pure Appl. Algebra 221 (2017), 645-665. (2017) Zbl1397.16012MR3556702DOI10.1016/j.jpaa.2016.07.010
  19. Pasquali, A., 10.1016/j.jpaa.2018.11.016, J. Pure Appl. Algebra 223 (2019), 3537-3553 9999DOI99999 10.1016/j.jpaa.2018.11.016 . (2019) Zbl1411.16018MR3926226DOI10.1016/j.jpaa.2018.11.016

NotesEmbed ?

top

You must be logged in to post comments.