The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 135-149
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHe, Suixin, and Tao, Shuangping. "The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators." Czechoslovak Mathematical Journal 73.1 (2023): 135-149. <http://eudml.org/doc/299464>.
@article{He2023,
abstract = {We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.},
author = {He, Suixin, Tao, Shuangping},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted Hardy space; weighted BMO space; multilinear Calderón-Zygmund operator; weak factorization},
language = {eng},
number = {1},
pages = {135-149},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators},
url = {http://eudml.org/doc/299464},
volume = {73},
year = {2023},
}
TY - JOUR
AU - He, Suixin
AU - Tao, Shuangping
TI - The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 135
EP - 149
AB - We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.
LA - eng
KW - weighted Hardy space; weighted BMO space; multilinear Calderón-Zygmund operator; weak factorization
UR - http://eudml.org/doc/299464
ER -
References
top- Coifman, R. R., Rochberg, R., Weiss, G., 10.2307/1970954, Ann. Math. (2) 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721DOI10.2307/1970954
- Duong, X. T., Li, J., Wick, B. D., Yang, D., 10.1512/iumj.2017.66.6115, Indiana Univ. Math. J. 66 (2017), 1081-1106. (2017) Zbl1376.42028MR3689327DOI10.1512/iumj.2017.66.6115
- Grafakos, L., Torres, R. H., 10.1512/iumj.2002.51.2114, Indiana Univ. Math. J. 51 (2002), 1261-1276. (2002) Zbl1033.42010MR1947875DOI10.1512/iumj.2002.51.2114
- Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R., 10.1016/j.aim.2008.10.014, Adv. Math. 220 (2009), 1222-1264. (2009) Zbl1160.42009MR2483720DOI10.1016/j.aim.2008.10.014
- Li, J., Wick, B. D., 10.1016/j.jfa.2017.03.007, J. Funct. Anal. 272 (2017), 5384-5416. (2017) Zbl1366.42027MR3639532DOI10.1016/j.jfa.2017.03.007
- Li, J., Wick, B. D., 10.4153/CMB-2017-033-9, Can. Math. Bull. 60 (2017), 571-585. (2017) Zbl1372.42018MR3679731DOI10.4153/CMB-2017-033-9
- Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Wang, D. H., Zhou, J., Teng, Z. D., 10.1007/s10114-021-9567-6, Acta. Math. Sin., Engl. Ser. 37 (2021), 1278-1292. (2021) Zbl1473.42021MR4305390DOI10.1007/s10114-021-9567-6
- Wang, D., Zhu, R., Weak factorizations of the Hardy space in terms of multilinear fractional integral operator, Available at https://arxiv.org/abs/2112.06249v1 (2021), 12 pages. (2021) MR4471559
- Wang, D., Zhu, R., Shu, L., The factorizations of via multilinear Calderón-Zygmund operators on weighted Lebesgue spaces, Available at https://arxiv.org/abs/2112.06252v1 (2021), 22 pages. (2021) MR4576368
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.