The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators

Suixin He; Shuangping Tao

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 135-149
  • ISSN: 0011-4642

Abstract

top
We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.

How to cite

top

He, Suixin, and Tao, Shuangping. "The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators." Czechoslovak Mathematical Journal 73.1 (2023): 135-149. <http://eudml.org/doc/299464>.

@article{He2023,
abstract = {We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.},
author = {He, Suixin, Tao, Shuangping},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted Hardy space; weighted BMO space; multilinear Calderón-Zygmund operator; weak factorization},
language = {eng},
number = {1},
pages = {135-149},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators},
url = {http://eudml.org/doc/299464},
volume = {73},
year = {2023},
}

TY - JOUR
AU - He, Suixin
AU - Tao, Shuangping
TI - The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 135
EP - 149
AB - We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.
LA - eng
KW - weighted Hardy space; weighted BMO space; multilinear Calderón-Zygmund operator; weak factorization
UR - http://eudml.org/doc/299464
ER -

References

top
  1. Coifman, R. R., Rochberg, R., Weiss, G., 10.2307/1970954, Ann. Math. (2) 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721DOI10.2307/1970954
  2. Duong, X. T., Li, J., Wick, B. D., Yang, D., 10.1512/iumj.2017.66.6115, Indiana Univ. Math. J. 66 (2017), 1081-1106. (2017) Zbl1376.42028MR3689327DOI10.1512/iumj.2017.66.6115
  3. Grafakos, L., Torres, R. H., 10.1512/iumj.2002.51.2114, Indiana Univ. Math. J. 51 (2002), 1261-1276. (2002) Zbl1033.42010MR1947875DOI10.1512/iumj.2002.51.2114
  4. Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R., 10.1016/j.aim.2008.10.014, Adv. Math. 220 (2009), 1222-1264. (2009) Zbl1160.42009MR2483720DOI10.1016/j.aim.2008.10.014
  5. Li, J., Wick, B. D., 10.1016/j.jfa.2017.03.007, J. Funct. Anal. 272 (2017), 5384-5416. (2017) Zbl1366.42027MR3639532DOI10.1016/j.jfa.2017.03.007
  6. Li, J., Wick, B. D., 10.4153/CMB-2017-033-9, Can. Math. Bull. 60 (2017), 571-585. (2017) Zbl1372.42018MR3679731DOI10.4153/CMB-2017-033-9
  7. Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  8. Wang, D. H., Zhou, J., Teng, Z. D., 10.1007/s10114-021-9567-6, Acta. Math. Sin., Engl. Ser. 37 (2021), 1278-1292. (2021) Zbl1473.42021MR4305390DOI10.1007/s10114-021-9567-6
  9. Wang, D., Zhu, R., Weak factorizations of the Hardy space in terms of multilinear fractional integral operator, Available at https://arxiv.org/abs/2112.06249v1 (2021), 12 pages. (2021) MR4471559
  10. Wang, D., Zhu, R., Shu, L., The factorizations of H ρ ( n ) via multilinear Calderón-Zygmund operators on weighted Lebesgue spaces, Available at https://arxiv.org/abs/2112.06252v1 (2021), 22 pages. (2021) MR4576368

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.