Non-linear Chandrasekhar-Bénard convectionin temperature-dependent variable viscosity Boussinesq-Stokes suspension fluid with variable heat source/sink

Nagasundar Kavitha; Agrahara Sanjeevmurthy Aruna; MKoppalu Shankarappa Basavaraj; Venkatesh Ramachandramurthy

Applications of Mathematics (2023)

  • Volume: 68, Issue: 3, page 357-376
  • ISSN: 0862-7940

Abstract

top
The generalized Lorenz model for non-linear stability of Rayleigh-Bénard magneto-convection is derived in the present paper. The Boussinesq-Stokes suspension fluid in the presence of variable viscosity (temperature-dependent viscosity) and internal heat source/sink is considered in this study. The influence of various parameters like suspended particles, applied vertical magnetic field, and the temperature-dependent heat source/sink has been analyzed. It is found that the basic state of the temperature gradient, viscosity variation, and the magnetic field can be conveniently expressed using the half-range Fourier cosine series. This facilitates to determine the analytical expression of the eigenvalue (thermal Rayleigh number) of the problem. From the analytical expression of the thermal Rayleigh number, it is evident that the Chandrasekhar number, internal Rayleigh number, Boussinesq-Stokes suspension parameters, and the thermorheological parameter influence the onset of convection. The non-linear theory involves the derivation of the generalized Lorenz model which is essentially a coupled autonomous system and is solved numerically using the classical Runge-Kutta method of the fourth order. The quantification of heat transfer is possible due to the numerical solution of the Lorenz system. It has been shown that the effect of heat source and temperature-dependent viscosity advance the onset of convection and thereby give rise to enhancing the heat transport. The Chandrasekhar number and the couple-stress parameter have stabilizing effects and reduce heat transfer. This problem has possible applications in the context of the magnetic field which influences the stability of the fluid.

How to cite

top

Kavitha, Nagasundar, et al. "Non-linear Chandrasekhar-Bénard convectionin temperature-dependent variable viscosity Boussinesq-Stokes suspension fluid with variable heat source/sink." Applications of Mathematics 68.3 (2023): 357-376. <http://eudml.org/doc/299474>.

@article{Kavitha2023,
abstract = {The generalized Lorenz model for non-linear stability of Rayleigh-Bénard magneto-convection is derived in the present paper. The Boussinesq-Stokes suspension fluid in the presence of variable viscosity (temperature-dependent viscosity) and internal heat source/sink is considered in this study. The influence of various parameters like suspended particles, applied vertical magnetic field, and the temperature-dependent heat source/sink has been analyzed. It is found that the basic state of the temperature gradient, viscosity variation, and the magnetic field can be conveniently expressed using the half-range Fourier cosine series. This facilitates to determine the analytical expression of the eigenvalue (thermal Rayleigh number) of the problem. From the analytical expression of the thermal Rayleigh number, it is evident that the Chandrasekhar number, internal Rayleigh number, Boussinesq-Stokes suspension parameters, and the thermorheological parameter influence the onset of convection. The non-linear theory involves the derivation of the generalized Lorenz model which is essentially a coupled autonomous system and is solved numerically using the classical Runge-Kutta method of the fourth order. The quantification of heat transfer is possible due to the numerical solution of the Lorenz system. It has been shown that the effect of heat source and temperature-dependent viscosity advance the onset of convection and thereby give rise to enhancing the heat transport. The Chandrasekhar number and the couple-stress parameter have stabilizing effects and reduce heat transfer. This problem has possible applications in the context of the magnetic field which influences the stability of the fluid.},
author = {Kavitha, Nagasundar, Aruna, Agrahara Sanjeevmurthy, Basavaraj, MKoppalu Shankarappa, Ramachandramurthy, Venkatesh},
journal = {Applications of Mathematics},
keywords = {Rayleigh-Bénard convection; heat source/sink; Boussinesq-Stokes suspension; Boussinesq approximation; Lorenz model},
language = {eng},
number = {3},
pages = {357-376},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-linear Chandrasekhar-Bénard convectionin temperature-dependent variable viscosity Boussinesq-Stokes suspension fluid with variable heat source/sink},
url = {http://eudml.org/doc/299474},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Kavitha, Nagasundar
AU - Aruna, Agrahara Sanjeevmurthy
AU - Basavaraj, MKoppalu Shankarappa
AU - Ramachandramurthy, Venkatesh
TI - Non-linear Chandrasekhar-Bénard convectionin temperature-dependent variable viscosity Boussinesq-Stokes suspension fluid with variable heat source/sink
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 357
EP - 376
AB - The generalized Lorenz model for non-linear stability of Rayleigh-Bénard magneto-convection is derived in the present paper. The Boussinesq-Stokes suspension fluid in the presence of variable viscosity (temperature-dependent viscosity) and internal heat source/sink is considered in this study. The influence of various parameters like suspended particles, applied vertical magnetic field, and the temperature-dependent heat source/sink has been analyzed. It is found that the basic state of the temperature gradient, viscosity variation, and the magnetic field can be conveniently expressed using the half-range Fourier cosine series. This facilitates to determine the analytical expression of the eigenvalue (thermal Rayleigh number) of the problem. From the analytical expression of the thermal Rayleigh number, it is evident that the Chandrasekhar number, internal Rayleigh number, Boussinesq-Stokes suspension parameters, and the thermorheological parameter influence the onset of convection. The non-linear theory involves the derivation of the generalized Lorenz model which is essentially a coupled autonomous system and is solved numerically using the classical Runge-Kutta method of the fourth order. The quantification of heat transfer is possible due to the numerical solution of the Lorenz system. It has been shown that the effect of heat source and temperature-dependent viscosity advance the onset of convection and thereby give rise to enhancing the heat transport. The Chandrasekhar number and the couple-stress parameter have stabilizing effects and reduce heat transfer. This problem has possible applications in the context of the magnetic field which influences the stability of the fluid.
LA - eng
KW - Rayleigh-Bénard convection; heat source/sink; Boussinesq-Stokes suspension; Boussinesq approximation; Lorenz model
UR - http://eudml.org/doc/299474
ER -

References

top
  1. Aruna, A. S., Ramachandramurthy, V., Kavitha, N., 10.18311/jims/2021/22782, J. Indian Math. Soc., New Ser. 88 (2021), 8-22. (2021) Zbl07425434MR4213956DOI10.18311/jims/2021/22782
  2. Bhattacharyya, S. P., Jena, S. K., 10.1007/BF02861831, Proc. Indian Acad. Sci., Math. Sci. 93 (1984), 13-26 9999DOI99999 10.1007/BF02861831 . (1984) Zbl0566.76009MR0796769DOI10.1007/BF02861831
  3. Busse, F. H., Frick, H., 10.1017/S0022112085000222, J. Fluid Mech. 150 (1985), 451-465. (1985) Zbl0588.76073DOI10.1017/S0022112085000222
  4. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics. Clarendon Press, Oxford (1961). (1961) Zbl0142.44103MR0128226
  5. Clever, R. M., 10.1007/BF01601337, Z. Angew. Math. Phys. 28 (1977), 585-597. (1977) Zbl0382.76038DOI10.1007/BF01601337
  6. Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B., Buoyancy Induced Flows and Transport, Hemisphere Publishing Corporation, Washington (1988). (1988) Zbl0699.76001
  7. Gireesha, B. J., Kumar, P. B. Sampath, Mahanthesh, B., Shehzad, S. A., Abbasi, F. M., 10.1007/s12217-018-9594-9, Microgravity Sci. Technol. 30 (2018 ), 257-264. (2018) DOI10.1007/s12217-018-9594-9
  8. Kulacki, F. A., Goldstein, R. J., 10.1017/S0022112072001855, J. Fluid Mech. 55 (1972), 271-287. (1972) DOI10.1017/S0022112072001855
  9. Makinde, O. D., Olajuwon, B. I., Gbolagade, A. W., Adomian decomposition approach to a boundary layer flow with thermal radiation past a moving vertical porous plate, Int. J. Appl. Math. Mech. 3 (2007), 62-70. (2007) 
  10. Manjunatha, S., Kuttan, B. Ammani, Jayanthi, S., Chamkha, A., Gireesha, B. J., 10.1016/j.heliyon.2019.e01469, Heliyon 5 (2019), Article ID e01469, 16 pages. (2019) DOI10.1016/j.heliyon.2019.e01469
  11. Maruthamanikandan, S., Thomas, N. M., Mathew, S., 10.1088/1742-6596/1139/1/012024, J. Phys., Conf. Ser. 1139 (2018), Article ID 012024, 12 pages. (2018) DOI10.1088/1742-6596/1139/1/012024
  12. McKenzie, D. P., Roberts, J. M., Weiss, N. O., 10.1017/S0022112074000784, J. Fluid Mech. 62 (1974), 465-538. (1974) Zbl0277.76087DOI10.1017/S0022112074000784
  13. Meenakshi, N., Siddheshwar, P. G., 10.1007/s12190-017-1129-9, J. Appl. Math. Comput. 57 (2018), 703-728. (2018) Zbl1394.35368MR3790197DOI10.1007/s12190-017-1129-9
  14. Palm, E., 10.1146/annurev.fl.07.010175.000351, Annual Review of Fluid Mechanics. Volume 7 Annual Reviews, Palo Alto (1975), 39-61. (1975) Zbl0358.76038DOI10.1146/annurev.fl.07.010175.000351
  15. Platten, J. K., Legros, J. C., 10.1007/978-3-642-82095-3, Springer, Berlin (1984). (1984) Zbl0545.76048DOI10.1007/978-3-642-82095-3
  16. Ramachandramurthy, V., Aruna, A. S., Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with heat source, Math. Sci. Int. Research J. 6 (2017), 92-98. (2017) 
  17. Ramachandramurthy, V., Aruna, A. S., Kavitha, N., 10.1007/s40819-020-0781-1, Int. J. Appl. Comput. Math. 6 (2020), Article ID 27, 14 pages. (2020) Zbl1461.76160MR4062157DOI10.1007/s40819-020-0781-1
  18. Ramachandramurthy, V., Uma, D., Kavitha, N., Effect of non-inertial acceleration on heat transport by Rayleigh-Bénard magnetoconvection in Boussinesq-Stokes suspension with variable heat source, Int. J. Appl. Eng. Research 14 (2019), 2126-2133. (2019) 
  19. Riahi, N., 10.1143/JPSJ.53.4169, J. Phys. Soc. Jap. 53 (1984), 4169-4178. (1984) MR0779210DOI10.1143/JPSJ.53.4169
  20. Riahi, N., 10.1016/0020-7462(86)90016-8, Int. J. Non-Linear Mech. 21 (1986), 97-105. (1986) Zbl0592.76049MR0840767DOI10.1016/0020-7462(86)90016-8
  21. Roberts, P. H., 10.1017/S0022112067001284, J. Fluid Mech. 30 (1967), 33-49. (1967) DOI10.1017/S0022112067001284
  22. Severin, J., Herwig, H., 10.1007/PL00001494, Z. Angew. Math. Phys. 50 (1999), 375-386. (1999) Zbl0926.76045MR1697713DOI10.1007/PL00001494
  23. Sharma, R. C., Sharma, M., Effect of suspended particles on couple-stress fluid heated from below in the presence of rotation and magnetic field, Indian J. Pure Appl. Math. 35 (2004), 973-989. (2004) Zbl1115.76327
  24. Siddheshwar, P. G., 10.1007/BF02704425, Pramana J. Phys. 62 (2004), 61-68. (2004) DOI10.1007/BF02704425
  25. Siddheshwar, P. G., 10.4236/am.2010.16072, Appl. Math., Irvine 1 (2010), 542-554. (2010) DOI10.4236/am.2010.16072
  26. Siddheshwar, P. G., Bhadauria, B. S., Mishra, P., Srivastava, A. K., 10.1016/j.ijnonlinmec.2011.06.006, Int. J. Non-Linear Mech. 47 (2012), 418-425. (2012) DOI10.1016/j.ijnonlinmec.2011.06.006
  27. Siddheshwar, P. G., Pranesh, S., 10.1016/S1270-9638(01)01144-0, Aerosp. Sci. Technol. 6 (2002), 105-114. (2002) Zbl1006.76545DOI10.1016/S1270-9638(01)01144-0
  28. Siddheshwar, P. G., Pranesh, S., 10.1016/S0020-7462(02)00169-5, Int. J. Non-Linear Mech. 39 (2004), 165-172. (2004) Zbl1348.76176DOI10.1016/S0020-7462(02)00169-5
  29. Siddheshwar, P. G., Ramachandramurthy, V., Uma, D., 10.1016/j.ijengsci.2011.05.020, Int. J. Eng. Sci. 49 (2011), 1078-1094. (2011) Zbl1423.76504DOI10.1016/j.ijengsci.2011.05.020
  30. Siddheshwar, P. G., Titus, P. S., 10.1115/1.4024943, J. Heat Transfer 135 (2013), Article ID 122502, 12 pages. (2013) DOI10.1115/1.4024943
  31. Somerscales, E. F. C., Dougherty, T. S., 10.1017/S0022112070001593, J. Fluid Mech. 42 (1970), 755-768. (1970) DOI10.1017/S0022112070001593
  32. Sparrow, E. M., Goldstein, R. J., Jonsson, V. K., 10.1017/S0022112064000386, J. Fluid Mech. 18 (1964), 513-528. (1964) Zbl0128.20401MR0187533DOI10.1017/S0022112064000386
  33. Stengel, K. C., Oliver, D. S., Booker, J. R., 10.1017/S0022112082002821, J. Fluid Mech. 120 (1982), 411-431. (1982) Zbl0534.76093DOI10.1017/S0022112082002821
  34. Thirlby, R., 10.1017/S0022112070002082, J. Fluid Mech. 44 (1970), 673-693. (1970) Zbl0219.76098DOI10.1017/S0022112070002082
  35. Torrance, K. E., Turcotte, D. L., 10.1017/S002211207100096X, J. Fluid Mech. 47 (1971), 113-125. (1971) DOI10.1017/S002211207100096X
  36. Tritton, D. J., Zarraga, M. N., 10.1017/S0022112067001272, J. Fluid Mech. 30 (1967), 21-31. (1967) DOI10.1017/S0022112067001272
  37. Watson, E. L., Rheological behaviour of apricot purees and concentrates, Can. Agric. Eng. 10 (1968), 8-11. (1968) 
  38. Yusuf, A. B., Ajibade, O. A., 10.33003/fjs-2020-0402-208, FUDMA J. Sci. 4 (2020), 135-150. (2020) DOI10.33003/fjs-2020-0402-208

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.