Convex ( L , M ) -fuzzy remote neighborhood operators

Hu Zhao; Li-Yan Jia; Gui-Xiu Chen

Kybernetika (2024)

  • Issue: 2, page 150-171
  • ISSN: 0023-5954

Abstract

top
In this paper, two kinds of remote neighborhood operators in ( L , M ) -fuzzy convex spaces are proposed, which are called convex ( L , M ) -fuzzy remote neighborhood operators. It is proved that these two kinds of convex ( L , M ) -fuzzy remote neighborhood operators can be used to characterize ( L , M ) -fuzzy convex structures. In addition, the lattice structures of two kinds of convex ( L , M ) -fuzzy remote neighborhood operators are also given.

How to cite

top

Zhao, Hu, Jia, Li-Yan, and Chen, Gui-Xiu. "Convex $(L,M)$-fuzzy remote neighborhood operators." Kybernetika (2024): 150-171. <http://eudml.org/doc/299479>.

@article{Zhao2024,
abstract = {In this paper, two kinds of remote neighborhood operators in $(L, M)$-fuzzy convex spaces are proposed, which are called convex $(L,M)$-fuzzy remote neighborhood operators. It is proved that these two kinds of convex $(L,M)$-fuzzy remote neighborhood operators can be used to characterize $(L, M)$-fuzzy convex structures. In addition, the lattice structures of two kinds of convex $ (L,M) $-fuzzy remote neighborhood operators are also given.},
author = {Zhao, Hu, Jia, Li-Yan, Chen, Gui-Xiu},
journal = {Kybernetika},
keywords = {convex $(L,M)$-fuzzy remote neighborhood operator; $(L,M)$-fuzzy convex structure; complete lattice},
language = {eng},
number = {2},
pages = {150-171},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Convex $(L,M)$-fuzzy remote neighborhood operators},
url = {http://eudml.org/doc/299479},
year = {2024},
}

TY - JOUR
AU - Zhao, Hu
AU - Jia, Li-Yan
AU - Chen, Gui-Xiu
TI - Convex $(L,M)$-fuzzy remote neighborhood operators
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 150
EP - 171
AB - In this paper, two kinds of remote neighborhood operators in $(L, M)$-fuzzy convex spaces are proposed, which are called convex $(L,M)$-fuzzy remote neighborhood operators. It is proved that these two kinds of convex $(L,M)$-fuzzy remote neighborhood operators can be used to characterize $(L, M)$-fuzzy convex structures. In addition, the lattice structures of two kinds of convex $ (L,M) $-fuzzy remote neighborhood operators are also given.
LA - eng
KW - convex $(L,M)$-fuzzy remote neighborhood operator; $(L,M)$-fuzzy convex structure; complete lattice
UR - http://eudml.org/doc/299479
ER -

References

top
  1. Fang, J. M., Yue, Y. L., , Fuzzy Sets Syst. 161 (2010), 1242-1252. MR2603067DOI
  2. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislowe, M., Scott, D. S., Continuous Lattices and Domains., Cambridge University Press, Cambridge 2003. MR1975381
  3. Höhle, U., Rodabaugh, S. E., Mathematics of fuzzy sets. Logic, topology, and measure theory., Handbooks of Fuzzy Sets, 1999. MR1788902
  4. Lassak, M., On metric B -convexity for which diameters of any set and its hull are equal., Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977), 969-975. MR0461286
  5. Maruyama, Y., Lattice-valued fuzzy convex geometry., RIMS Kokyuroku 1641 (2009), 22-37. 
  6. Munkres, J. R., Topology: A First Course., Prentice-Hall, Englewood Cliffs, NJ 1975. MR0464128
  7. Pang, B., , Comput. Appl. Math. 39 (2020), 41. MR4059965DOI
  8. Pang, B., , Fuzzy Sets Syst. 405 (2021), 106-127. MR4191313DOI
  9. Pang, B., Shi, F.-G., , Quaestion. Math. 41 (2018), 8, 1021-1043. MR3885942DOI
  10. Rosa, M. V., , Fuzzy Sets Syst. 62 (1994), 97-100. MR1259888DOI
  11. Shi, F. G., Xiu, Z. Y., , J. Appl. Math. 2014 (2014), 1-12. MR3259199DOI
  12. Shi, F. G., Xiu, Z.-Y., , J. Nonlinear Sci. Appl. 10 (2017), 3655-3669. MR3680307DOI
  13. Soltan, V. P., d -convexity in graphs. (Russian), Dokl. Akad. Nauk SSSR 272 (1983), 535-537. MR0723776
  14. Šostak, A. P., On a fuzzy topological structure Rend., Circ. Mat. Palermo 11 (1985), 89-103. MR0897975
  15. Vel, M.L.J. Van De, , North-Holland, Amsterdam 1993. MR1234493DOI
  16. Wang, G.-J., , Fuzzy Sets Syst. 47 (1992), 351-376. MR1166284DOI
  17. Xiu, Z. Y., Pang, B., Base axioms and subbase axioms in M -fuzzifying convex spaces., Iran. J. Fuzzy Syst. 15 (2018), 75-87. MR3840022
  18. Yang, H., Li, E. Q., A new approach to interval operators in L -convex spaces., J. Nonlinear Convex Anal. 21 (2020), 12, 2705-2714. MR4194712
  19. Yang, H., Pang, B., , Filomat. 35 (2021), 10, 3521-3532. MR4365455DOI
  20. Yang, X. F., Li, S. G., , Fuzzy Sets Syst. 204 (2012), 53-65. MR2950795DOI
  21. Yue, Y. L., Fang, J. M., , Fuzzy Sets Syst. 157 (2006), 832-842. MR2223563DOI
  22. Zhao, H., Hu, X., Sayed, O. R., El-Sanousy, E., Sayed, Y. H. Ragheb, , Comput. Appl. Math. 40 (2021), 301. MR4338783DOI
  23. Zhao, H., Sayed, O. R., El-Sanousy, E., Sayed, Y. H. Ragheb, Chen, G. X., , J. Intel. Fuzzy Syst. 40 (2021), 5, 8765-8773. MR4338783DOI
  24. Zhao, H., Song, Q. L., Sayed, O. R., El-Sanousy, E., Sayed, Y. H.Ragheb, Chen, G. X., , Filomat. 35 (2021), 5, 1687-1691. MR4364030DOI
  25. Zhao, H., Jia, L. Y., Chen, G. X., , J. Intel. Fuzzy Syst. 44 (2023), 3515-3526. MR0743509DOI
  26. Zhao, H., Zhao, Y. J., Zhang, S. Y., , Filomat. 37 (2023), 11, 3559-3573. MR4573824DOI
  27. Zhao, H., Hu, X., Chen, G. X., , J. Intel. Fuzzy Syst. 45 (2023), 4535-4545. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.