Lipschitz constants for a hyperbolic type metric under Möbius transformations

Yinping Wu; Gendi Wang; Gaili Jia; Xiaohui Zhang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 445-460
  • ISSN: 0011-4642

Abstract

top
Let D be a nonempty open set in a metric space ( X , d ) with D . Define h D , c ( x , y ) = log 1 + c d ( x , y ) d D ( x ) d D ( y ) , where d D ( x ) = d ( x , D ) is the distance from x to the boundary of D . For every c 2 , h D , c is a metric. We study the sharp Lipschitz constants for the metric h D , c under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.

How to cite

top

Wu, Yinping, et al. "Lipschitz constants for a hyperbolic type metric under Möbius transformations." Czechoslovak Mathematical Journal 74.2 (2024): 445-460. <http://eudml.org/doc/299486>.

@article{Wu2024,
abstract = {Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\ne \emptyset $. Define \[ h\_\{D,c\}(x,y)=\log \bigg (1+c\frac\{d(x,y)\}\{\sqrt\{d\_D(x)d\_D(y)\}\}\bigg ), \] where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\ge 2$, $h_\{D,c\}$ is a metric. We study the sharp Lipschitz constants for the metric $h_\{D,c\}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.},
author = {Wu, Yinping, Wang, Gendi, Jia, Gaili, Zhang, Xiaohui},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lipschitz constant; hyperbolic type metric; Möbius transformation},
language = {eng},
number = {2},
pages = {445-460},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lipschitz constants for a hyperbolic type metric under Möbius transformations},
url = {http://eudml.org/doc/299486},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Wu, Yinping
AU - Wang, Gendi
AU - Jia, Gaili
AU - Zhang, Xiaohui
TI - Lipschitz constants for a hyperbolic type metric under Möbius transformations
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 445
EP - 460
AB - Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\ne \emptyset $. Define \[ h_{D,c}(x,y)=\log \bigg (1+c\frac{d(x,y)}{\sqrt{d_D(x)d_D(y)}}\bigg ), \] where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\ge 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
LA - eng
KW - Lipschitz constant; hyperbolic type metric; Möbius transformation
UR - http://eudml.org/doc/299486
ER -

References

top
  1. Ahlfors, L. V., 10.1090/chel/371, AMS Chelsea Publishing, Providence (2010). (2010) Zbl1211.30002MR2730573DOI10.1090/chel/371
  2. Anderson, G. D., Vamanamurthy, M. K., Vuorinen, M., Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Chichester (1997). (1997) Zbl0885.30012MR1462077
  3. Beardon, A. F., 10.1007/978-1-4612-1146-4, Graduate Texts in Mathematics 91. Springer, New York (1983). (1983) Zbl0528.30001MR0698777DOI10.1007/978-1-4612-1146-4
  4. Beardon, A. F., Minda, D., The hyperbolic metric and geometric function theory, Proceedings of the International Workshop on Quasiconformal Mappings and Their Applications Narosa Publishing House, New Delhi (2007), 9-56. (2007) Zbl1208.30001MR2492498
  5. Chen, J., Hariri, P., Klén, R., Vuorinen, M., 10.5186/aasfm.2015.4039, Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709. (2015) Zbl1374.30069MR3409699DOI10.5186/aasfm.2015.4039
  6. Dovgoshey, O., Hariri, P., Vuorinen, M., 10.1080/17476933.2016.1182517, Complex Var. Elliptic Equ. 61 (2016), 1464-1480. (2016) Zbl1354.54026MR3513361DOI10.1080/17476933.2016.1182517
  7. Gehring, F. W., Hag, K., 10.1090/conm/256, Proceedings of the First Ahlfors-Bers Colloquium, State University of New York, Stony Brook, NY, USA, November 6-8, 1998 Contemporary Mathematics 256. AMS, Providence (2000), (143-163). (143) Zbl0964.30024MR1759676DOI10.1090/conm/256
  8. Gehring, F. W., Hag, K., 10.1090/surv/184, Mathematical Surveys and Monographs 184. AMS, Providence (2012). (2012) Zbl1267.30003MR2933660DOI10.1090/surv/184
  9. Gehring, F. W., Osgood, B. G., 10.1007/BF02798768, J. Anal. Math. 36 (1979), 50-74. (1979) Zbl0449.30012MR0581801DOI10.1007/BF02798768
  10. Gehring, F. W., Palka, B. P., 10.1007/BF02786713, J. Anal. Math. 30 (1976), 172-199. (1976) Zbl0349.30019MR0437753DOI10.1007/BF02786713
  11. Hariri, P., Klén, R., Vuorinen, M., 10.1007/978-3-030-32068-3, Springer Monographs in Mathematics. Springer, Cham (2020). (2020) Zbl1450.30003MR4179585DOI10.1007/978-3-030-32068-3
  12. Hariri, P., Vuorinen, M., Wang, G., 10.1007/s40315-015-0137-8, Comput. Methods Funct. Theory 16 (2016), 187-201. (2016) Zbl1355.30019MR3503350DOI10.1007/s40315-015-0137-8
  13. Hariri, P., Vuorinen, M., Zhang, X., 10.1216/RMJ-2017-47-4-1121, Rocky Mt. J. Math. 47 (2017), 1121-1148. (2017) Zbl1376.30019MR3689948DOI10.1216/RMJ-2017-47-4-1121
  14. Hästö, P. A., 10.1016/S0022-247X(02)00219-6, J. Math. Anal. Appl. 274 (2002), 38-58. (2002) Zbl1019.54011MR1936685DOI10.1016/S0022-247X(02)00219-6
  15. Ibragimov, Z., Mohapatra, M. R., Sahoo, S. K., Zhang, X., 10.1007/s40840-015-0246-6, Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 361-372. (2017) Zbl1366.30007MR3592912DOI10.1007/s40840-015-0246-6
  16. Jia, G., Wang, G., Zhang, X., 10.1007/s40840-021-01163-2, Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 4223-4237. (2021) Zbl1476.30149MR4321759DOI10.1007/s40840-021-01163-2
  17. Klén, R., Lindén, H., Vuorinen, M., Wang, G., 10.1007/s40315-014-0075-x, Comput. Methods Funct. Theory 14 (2014), 577-608. (2014) Zbl1307.30082MR3265380DOI10.1007/s40315-014-0075-x
  18. Klén, R., Mohapatra, M. R., Sahoo, S. K., 10.1002/mana.201600117, Math. Nachr. 290 (2017), 1531-1543. (2017) Zbl1392.30005MR3672894DOI10.1002/mana.201600117
  19. Mocanu, M., 10.3390/sym13112072, Symmetry 13 (2021), Article ID 2072, 21 pages. (2021) DOI10.3390/sym13112072
  20. Mohapatra, M. R., Sahoo, S. K., 10.1007/s40315-018-0233-7, Comput. Methods Funct. Theory 18 (2018), 473-493. (2018) Zbl1402.30039MR3844664DOI10.1007/s40315-018-0233-7
  21. Nikolov, N., Andreev, L., 10.1007/s10231-016-0561-z, Ann. Mat. Pura Appl. (4) 196 (2017), 43-50. (2017) Zbl1366.32006MR3600857DOI10.1007/s10231-016-0561-z
  22. Ratcliffe, J. G., 10.1007/978-0-387-47322-2, Graduate Texts in Mathematics 149. Springer, New York (2006). (2006) Zbl1106.51009MR2249478DOI10.1007/978-0-387-47322-2
  23. Simić, S., Vuorinen, M., Wang, G., 10.7146/math.scand.a-20452, Math. Scand. 116 (2015), 86-103. (2015) Zbl1311.30004MR3322608DOI10.7146/math.scand.a-20452
  24. Vuorinen, M., 10.1007/BFb0077904, Lecture Notes in Mathematics 1319. Springer, Berlin (1988). (1988) Zbl0646.30025MR0950174DOI10.1007/BFb0077904
  25. Wang, G., Xu, X., Vuorinen, M., 10.1007/s40840-020-01011-9, Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 1559-1577. (2021) Zbl1462.30085MR4241324DOI10.1007/s40840-020-01011-9
  26. Xu, X., Wang, G., Zhang, X., 10.1007/s40315-021-00414-4, Comput. Methods Funct. Theory 22 (2022), 609-627. (2022) Zbl1502.30130MR4473943DOI10.1007/s40315-021-00414-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.