Lipschitz constants for a hyperbolic type metric under Möbius transformations
Yinping Wu; Gendi Wang; Gaili Jia; Xiaohui Zhang
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 445-460
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWu, Yinping, et al. "Lipschitz constants for a hyperbolic type metric under Möbius transformations." Czechoslovak Mathematical Journal 74.2 (2024): 445-460. <http://eudml.org/doc/299486>.
@article{Wu2024,
abstract = {Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\ne \emptyset $. Define \[ h\_\{D,c\}(x,y)=\log \bigg (1+c\frac\{d(x,y)\}\{\sqrt\{d\_D(x)d\_D(y)\}\}\bigg ), \]
where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\ge 2$, $h_\{D,c\}$ is a metric. We study the sharp Lipschitz constants for the metric $h_\{D,c\}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.},
author = {Wu, Yinping, Wang, Gendi, Jia, Gaili, Zhang, Xiaohui},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lipschitz constant; hyperbolic type metric; Möbius transformation},
language = {eng},
number = {2},
pages = {445-460},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lipschitz constants for a hyperbolic type metric under Möbius transformations},
url = {http://eudml.org/doc/299486},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Wu, Yinping
AU - Wang, Gendi
AU - Jia, Gaili
AU - Zhang, Xiaohui
TI - Lipschitz constants for a hyperbolic type metric under Möbius transformations
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 445
EP - 460
AB - Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\ne \emptyset $. Define \[ h_{D,c}(x,y)=\log \bigg (1+c\frac{d(x,y)}{\sqrt{d_D(x)d_D(y)}}\bigg ), \]
where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\ge 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
LA - eng
KW - Lipschitz constant; hyperbolic type metric; Möbius transformation
UR - http://eudml.org/doc/299486
ER -
References
top- Ahlfors, L. V., 10.1090/chel/371, AMS Chelsea Publishing, Providence (2010). (2010) Zbl1211.30002MR2730573DOI10.1090/chel/371
- Anderson, G. D., Vamanamurthy, M. K., Vuorinen, M., Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Chichester (1997). (1997) Zbl0885.30012MR1462077
- Beardon, A. F., 10.1007/978-1-4612-1146-4, Graduate Texts in Mathematics 91. Springer, New York (1983). (1983) Zbl0528.30001MR0698777DOI10.1007/978-1-4612-1146-4
- Beardon, A. F., Minda, D., The hyperbolic metric and geometric function theory, Proceedings of the International Workshop on Quasiconformal Mappings and Their Applications Narosa Publishing House, New Delhi (2007), 9-56. (2007) Zbl1208.30001MR2492498
- Chen, J., Hariri, P., Klén, R., Vuorinen, M., 10.5186/aasfm.2015.4039, Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709. (2015) Zbl1374.30069MR3409699DOI10.5186/aasfm.2015.4039
- Dovgoshey, O., Hariri, P., Vuorinen, M., 10.1080/17476933.2016.1182517, Complex Var. Elliptic Equ. 61 (2016), 1464-1480. (2016) Zbl1354.54026MR3513361DOI10.1080/17476933.2016.1182517
- Gehring, F. W., Hag, K., 10.1090/conm/256, Proceedings of the First Ahlfors-Bers Colloquium, State University of New York, Stony Brook, NY, USA, November 6-8, 1998 Contemporary Mathematics 256. AMS, Providence (2000), (143-163). (143) Zbl0964.30024MR1759676DOI10.1090/conm/256
- Gehring, F. W., Hag, K., 10.1090/surv/184, Mathematical Surveys and Monographs 184. AMS, Providence (2012). (2012) Zbl1267.30003MR2933660DOI10.1090/surv/184
- Gehring, F. W., Osgood, B. G., 10.1007/BF02798768, J. Anal. Math. 36 (1979), 50-74. (1979) Zbl0449.30012MR0581801DOI10.1007/BF02798768
- Gehring, F. W., Palka, B. P., 10.1007/BF02786713, J. Anal. Math. 30 (1976), 172-199. (1976) Zbl0349.30019MR0437753DOI10.1007/BF02786713
- Hariri, P., Klén, R., Vuorinen, M., 10.1007/978-3-030-32068-3, Springer Monographs in Mathematics. Springer, Cham (2020). (2020) Zbl1450.30003MR4179585DOI10.1007/978-3-030-32068-3
- Hariri, P., Vuorinen, M., Wang, G., 10.1007/s40315-015-0137-8, Comput. Methods Funct. Theory 16 (2016), 187-201. (2016) Zbl1355.30019MR3503350DOI10.1007/s40315-015-0137-8
- Hariri, P., Vuorinen, M., Zhang, X., 10.1216/RMJ-2017-47-4-1121, Rocky Mt. J. Math. 47 (2017), 1121-1148. (2017) Zbl1376.30019MR3689948DOI10.1216/RMJ-2017-47-4-1121
- Hästö, P. A., 10.1016/S0022-247X(02)00219-6, J. Math. Anal. Appl. 274 (2002), 38-58. (2002) Zbl1019.54011MR1936685DOI10.1016/S0022-247X(02)00219-6
- Ibragimov, Z., Mohapatra, M. R., Sahoo, S. K., Zhang, X., 10.1007/s40840-015-0246-6, Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 361-372. (2017) Zbl1366.30007MR3592912DOI10.1007/s40840-015-0246-6
- Jia, G., Wang, G., Zhang, X., 10.1007/s40840-021-01163-2, Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 4223-4237. (2021) Zbl1476.30149MR4321759DOI10.1007/s40840-021-01163-2
- Klén, R., Lindén, H., Vuorinen, M., Wang, G., 10.1007/s40315-014-0075-x, Comput. Methods Funct. Theory 14 (2014), 577-608. (2014) Zbl1307.30082MR3265380DOI10.1007/s40315-014-0075-x
- Klén, R., Mohapatra, M. R., Sahoo, S. K., 10.1002/mana.201600117, Math. Nachr. 290 (2017), 1531-1543. (2017) Zbl1392.30005MR3672894DOI10.1002/mana.201600117
- Mocanu, M., 10.3390/sym13112072, Symmetry 13 (2021), Article ID 2072, 21 pages. (2021) DOI10.3390/sym13112072
- Mohapatra, M. R., Sahoo, S. K., 10.1007/s40315-018-0233-7, Comput. Methods Funct. Theory 18 (2018), 473-493. (2018) Zbl1402.30039MR3844664DOI10.1007/s40315-018-0233-7
- Nikolov, N., Andreev, L., 10.1007/s10231-016-0561-z, Ann. Mat. Pura Appl. (4) 196 (2017), 43-50. (2017) Zbl1366.32006MR3600857DOI10.1007/s10231-016-0561-z
- Ratcliffe, J. G., 10.1007/978-0-387-47322-2, Graduate Texts in Mathematics 149. Springer, New York (2006). (2006) Zbl1106.51009MR2249478DOI10.1007/978-0-387-47322-2
- Simić, S., Vuorinen, M., Wang, G., 10.7146/math.scand.a-20452, Math. Scand. 116 (2015), 86-103. (2015) Zbl1311.30004MR3322608DOI10.7146/math.scand.a-20452
- Vuorinen, M., 10.1007/BFb0077904, Lecture Notes in Mathematics 1319. Springer, Berlin (1988). (1988) Zbl0646.30025MR0950174DOI10.1007/BFb0077904
- Wang, G., Xu, X., Vuorinen, M., 10.1007/s40840-020-01011-9, Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 1559-1577. (2021) Zbl1462.30085MR4241324DOI10.1007/s40840-020-01011-9
- Xu, X., Wang, G., Zhang, X., 10.1007/s40315-021-00414-4, Comput. Methods Funct. Theory 22 (2022), 609-627. (2022) Zbl1502.30130MR4473943DOI10.1007/s40315-021-00414-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.