L -fuzzy ideal degrees in effect algebras

Xiaowei Wei; Fu Gui Shi

Kybernetika (2022)

  • Volume: 58, Issue: 6, page 996-1015
  • ISSN: 0023-5954

Abstract

top
In this paper, considering L being a completely distributive lattice, we first introduce the concept of L -fuzzy ideal degrees in an effect algebra E , in symbol 𝔇 e i . Further, we characterize L -fuzzy ideal degrees by cut sets. Then it is shown that an L -fuzzy subset A in E is an L -fuzzy ideal if and only if 𝔇 e i ( A ) = , which can be seen as a generalization of fuzzy ideals. Later, we discuss the relations between L -fuzzy ideals and cut sets ( L β -nested sets and L α -nested sets). Finally, we obtain that the L -fuzzy ideal degree is an ( L , L ) -fuzzy convexity. The morphism between two effect algebras is an ( L , L ) -fuzzy convexity-preserving mapping.

How to cite

top

Wei, Xiaowei, and Shi, Fu Gui. "$L$-fuzzy ideal degrees in effect algebras." Kybernetika 58.6 (2022): 996-1015. <http://eudml.org/doc/299488>.

@article{Wei2022,
abstract = {In this paper, considering $L$ being a completely distributive lattice, we first introduce the concept of $L$-fuzzy ideal degrees in an effect algebra $E$, in symbol $\mathfrak \{D\}_\{ei\}$. Further, we characterize $L$-fuzzy ideal degrees by cut sets. Then it is shown that an $L$-fuzzy subset $A$ in $E$ is an $L$-fuzzy ideal if and only if $\mathfrak \{D\}_\{ei\}(A)=\top ,$ which can be seen as a generalization of fuzzy ideals. Later, we discuss the relations between $L$-fuzzy ideals and cut sets ($L_\{\beta \}$-nested sets and $L_\{\alpha \}$-nested sets). Finally, we obtain that the $L$-fuzzy ideal degree is an $(L,L)$-fuzzy convexity. The morphism between two effect algebras is an $(L,L)$-fuzzy convexity-preserving mapping.},
author = {Wei, Xiaowei, Shi, Fu Gui},
journal = {Kybernetika},
keywords = {effect algebra; $L$-fuzzy ideal degree; cut set; $(L,L)$-fuzzy convexity},
language = {eng},
number = {6},
pages = {996-1015},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$L$-fuzzy ideal degrees in effect algebras},
url = {http://eudml.org/doc/299488},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Wei, Xiaowei
AU - Shi, Fu Gui
TI - $L$-fuzzy ideal degrees in effect algebras
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 6
SP - 996
EP - 1015
AB - In this paper, considering $L$ being a completely distributive lattice, we first introduce the concept of $L$-fuzzy ideal degrees in an effect algebra $E$, in symbol $\mathfrak {D}_{ei}$. Further, we characterize $L$-fuzzy ideal degrees by cut sets. Then it is shown that an $L$-fuzzy subset $A$ in $E$ is an $L$-fuzzy ideal if and only if $\mathfrak {D}_{ei}(A)=\top ,$ which can be seen as a generalization of fuzzy ideals. Later, we discuss the relations between $L$-fuzzy ideals and cut sets ($L_{\beta }$-nested sets and $L_{\alpha }$-nested sets). Finally, we obtain that the $L$-fuzzy ideal degree is an $(L,L)$-fuzzy convexity. The morphism between two effect algebras is an $(L,L)$-fuzzy convexity-preserving mapping.
LA - eng
KW - effect algebra; $L$-fuzzy ideal degree; cut set; $(L,L)$-fuzzy convexity
UR - http://eudml.org/doc/299488
ER -

References

top
  1. Davey, B. A., Priestley, H. A., Introduction to Lattice and Order., Cambridge University Press, Cambridge 2002. MR1902334
  2. Dong, Y. Y., Li, J., Fuzzy convex structures and prime fuzzy ideal space on residuated lattices., J. Nonlinear Convex Analysis 21 (2020), 12, 2725-2735. MR4194714
  3. Dvurečenskij, A., Pulmannová, S., New trends in Quantum Structures., Springer-Science Business Media, B.V. 2000. MR1861369
  4. Dwinger, P., , Mathematics 85 (1982), 4, 403-414. MR0683528DOI
  5. Foulis, D., Bennett, M. K., , Foundat. Physics 24 (1994), 1331-1352. MR1304942DOI
  6. al., G. Gierz et, Continuous lattices and domains, Encyclopedia of Mathematics and its Applications., Cambridge University Press, Cambridge 2003. MR1975381
  7. Goguan, J. A., , J. Math. Analysis Appl. 18 (1967), 145-174. MR0224391DOI
  8. Höhle, U., Šostak, A. P., , Math. Fuzzy Sets 3 (1999), 123-272. MR1788903DOI
  9. Li, J., Shi, F.-G., L -fuzzy convexity induced by L -convex fuzzy sublattice degree., Iranian J. Fuzzy Systems 14 (2017), 5, 83-102. MR3751405
  10. Liu, D. L., , Computer Engrg. Appl. (2011), 50-52. MR2933851DOI
  11. Liu, D. L., Wang, G. J., Fuzzy filters in effect algebras., Fuzzy Systems Math. 23 (2009), 6-17. MR2547361
  12. Luo, C. Z., Fuzzy sets and nested sets., Fuzzy Math. 4 (1983), 113-126. MR0743512
  13. Ma, Z. H., , Inform. Sci. 179 (2009), 505-507. MR2490189DOI
  14. Malik, D. S., Mordeson, J. N., , Fuzzy Sets Systems 45 (1992), 83-91. MR1148455DOI
  15. Mehmood, F., Shi, F.-G., , Mathematics 9 (2021), 1118. DOI
  16. Mehmood, F., Shi, F.-G., Hayat, K., A new approach to the fuzzification of rings., J. Nonlinear Convex Analysis 21 (12) (2020), 2637-2646. MR4194706
  17. Močkoř, J., , Int. J. General Systems 42 (2013), 67-78. MR2990334DOI
  18. Öztürk, M. A., Jun, Y. B., Yazarli, H., A new view of fuzzy gamma rings., Hacettepe J. Math. Statist. 39 (2010), 3, 365-378. MR2732632
  19. Pang, B., , Quaest. Math. 43 (2020), 11, 1541-1561. MR4181551DOI
  20. Pang, B., L -fuzzifying convex structures as L -convex structures., J. Nonlinear Convex Anal. 21 (2020), 12, 2831-2841. MR4194723
  21. Pang, B., , Computat. Appl. Math. (2020), 39-41. MR4059965DOI
  22. Pang, B., Shi, F.-G., , Quaest. Math. 41 (2018), 8, 1021-1043. MR3885942DOI
  23. Pei, D., Fan, T., , Int. J. General Systems 38 (2009), 3, 255-271. MR2527845DOI
  24. Rosa, M. V., , Fuzzy Sets Systems 62 (1994), 97-100. MR1259888DOI
  25. Shen, C., Shi, F.-G., L -convex systems and the categorical isomorphism to Scott-hull operators., Iranian J. Fuzzy Systems 15 (2018), 2, 23-40. MR3840019
  26. Shi, F.-G., Theory of L β -nested set and L α -nested sets and applications., Fuzzy Systems Math. (1995), 65-72. MR1384670
  27. Shi, F.-G., Xin, X., , J. Advanced Res. Pure Math. 3 (2011), 4, 92-108. MR2859291DOI
  28. Shi, F.-G., Xiu, Z. Y., , J. Appl. Math. 3 (2014), 1-12. MR3259199DOI
  29. Shi, F.-G., Xiu, Z. Y., , J. Nonlinear Sci. Appl. 10 (2017), 3655-3669. MR3680307DOI
  30. Shi, Y., Huang, H. L., A characterization of strong Q -concave spaces., J. Nonlinear Convex Anal. 21 (2020), 12, 2771-2781. MR4194718
  31. Vel, M. L. J. van de, Theory of Vonvex Structures., North Holland, N. Y. 1993. MR1234493
  32. Wang, G. J., , Fuzzy Sets Systems 47 (1992), 351-376. MR1166284DOI
  33. Wang, K., Shi, F.-G., M -fuzzifying topological convex spaces., Iranian J. Fuzzy Systems 15, (2018), 6, 159-174. MR3931764
  34. Wei, X. W., Pang, B., Mi, J. S., , Inform, Sci. 580 (2021), 283-310. MR4308034DOI
  35. Wei, X. W., Pang, B., Mi, J. S., , Int. J. General Systems 51 (2022), 3, 277-312. MR4407612DOI
  36. Wei, X. W., Wang, B., Fuzzy (restricted) hull operators and fuzzy convex structures on L -sets., J. Nonlinear Convex Anal. 21 (2020), 12, 2805-2815. MR4194721
  37. Wen, Y. F., Zhong, Y., Shi, F.-G., , J. Intell. Fuzzy Systems 33 (2017), 4031-4041. MR3751405DOI
  38. Williams, D. R. P., Latha, K. B., Chandrasekeran, E., Fuzzy bi- Γ -ideals in Γ -semigroups., Hacettepe J. Math. Statist. 38 (2009), 1, 1-15. MR2530686
  39. Wu, J., , Int. J. Theoret. Physics 43 (2004), 349-358. MR2080537DOI
  40. Yang, H., Li, E. Q., A new approach to interval operators in L -convex spaces., J. Nonlinear Convex Anal. 21 (2020), 12, 2705-2714. MR4194712
  41. Zhang, Q. W., , Hennan Sci. 34 (2016), 8, 1211-1214. DOI
  42. Zhang, Q. W., , Hennan Sci. 35 (2017), 10, 1567-1569. MR2490189DOI
  43. Zhao, F. F., Huang, H. L., The relationships among L -ordered hull operators, restricted L -hull operators and strong L -fuzzy convex structures., J. Nonlinear Convex Anal. 21 (2020), 12, 2817-2829. MR4194722
  44. Zhong, Y., Shi, F.-G., Characterizations of ( L , M ) -fuzzy topological degrees., Iranian J. Fuzzy Syst. 15 (2018), 4, 129-149. MR3823001
  45. Zhou, X. W., Shi, F.-G., , Filomat. 34 (2020), 4767-4781. MR4290887DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.