-fuzzy ideal degrees in effect algebras
Kybernetika (2022)
- Volume: 58, Issue: 6, page 996-1015
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWei, Xiaowei, and Shi, Fu Gui. "$L$-fuzzy ideal degrees in effect algebras." Kybernetika 58.6 (2022): 996-1015. <http://eudml.org/doc/299488>.
@article{Wei2022,
abstract = {In this paper, considering $L$ being a completely distributive lattice, we first introduce the concept of $L$-fuzzy ideal degrees in an effect algebra $E$, in symbol $\mathfrak \{D\}_\{ei\}$. Further, we characterize $L$-fuzzy ideal degrees by cut sets. Then it is shown that an $L$-fuzzy subset $A$ in $E$ is an $L$-fuzzy ideal if and only if $\mathfrak \{D\}_\{ei\}(A)=\top ,$ which can be seen as a generalization of fuzzy ideals. Later, we discuss the relations between $L$-fuzzy ideals and cut sets ($L_\{\beta \}$-nested sets and $L_\{\alpha \}$-nested sets). Finally, we obtain that the $L$-fuzzy ideal degree is an $(L,L)$-fuzzy convexity. The morphism between two effect algebras is an $(L,L)$-fuzzy convexity-preserving mapping.},
author = {Wei, Xiaowei, Shi, Fu Gui},
journal = {Kybernetika},
keywords = {effect algebra; $L$-fuzzy ideal degree; cut set; $(L,L)$-fuzzy convexity},
language = {eng},
number = {6},
pages = {996-1015},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$L$-fuzzy ideal degrees in effect algebras},
url = {http://eudml.org/doc/299488},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Wei, Xiaowei
AU - Shi, Fu Gui
TI - $L$-fuzzy ideal degrees in effect algebras
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 6
SP - 996
EP - 1015
AB - In this paper, considering $L$ being a completely distributive lattice, we first introduce the concept of $L$-fuzzy ideal degrees in an effect algebra $E$, in symbol $\mathfrak {D}_{ei}$. Further, we characterize $L$-fuzzy ideal degrees by cut sets. Then it is shown that an $L$-fuzzy subset $A$ in $E$ is an $L$-fuzzy ideal if and only if $\mathfrak {D}_{ei}(A)=\top ,$ which can be seen as a generalization of fuzzy ideals. Later, we discuss the relations between $L$-fuzzy ideals and cut sets ($L_{\beta }$-nested sets and $L_{\alpha }$-nested sets). Finally, we obtain that the $L$-fuzzy ideal degree is an $(L,L)$-fuzzy convexity. The morphism between two effect algebras is an $(L,L)$-fuzzy convexity-preserving mapping.
LA - eng
KW - effect algebra; $L$-fuzzy ideal degree; cut set; $(L,L)$-fuzzy convexity
UR - http://eudml.org/doc/299488
ER -
References
top- Davey, B. A., Priestley, H. A., Introduction to Lattice and Order., Cambridge University Press, Cambridge 2002. MR1902334
- Dong, Y. Y., Li, J., Fuzzy convex structures and prime fuzzy ideal space on residuated lattices., J. Nonlinear Convex Analysis 21 (2020), 12, 2725-2735. MR4194714
- Dvurečenskij, A., Pulmannová, S., New trends in Quantum Structures., Springer-Science Business Media, B.V. 2000. MR1861369
- Dwinger, P., , Mathematics 85 (1982), 4, 403-414. MR0683528DOI
- Foulis, D., Bennett, M. K., , Foundat. Physics 24 (1994), 1331-1352. MR1304942DOI
- al., G. Gierz et, Continuous lattices and domains, Encyclopedia of Mathematics and its Applications., Cambridge University Press, Cambridge 2003. MR1975381
- Goguan, J. A., , J. Math. Analysis Appl. 18 (1967), 145-174. MR0224391DOI
- Höhle, U., Šostak, A. P., , Math. Fuzzy Sets 3 (1999), 123-272. MR1788903DOI
- Li, J., Shi, F.-G., -fuzzy convexity induced by -convex fuzzy sublattice degree., Iranian J. Fuzzy Systems 14 (2017), 5, 83-102. MR3751405
- Liu, D. L., , Computer Engrg. Appl. (2011), 50-52. MR2933851DOI
- Liu, D. L., Wang, G. J., Fuzzy filters in effect algebras., Fuzzy Systems Math. 23 (2009), 6-17. MR2547361
- Luo, C. Z., Fuzzy sets and nested sets., Fuzzy Math. 4 (1983), 113-126. MR0743512
- Ma, Z. H., , Inform. Sci. 179 (2009), 505-507. MR2490189DOI
- Malik, D. S., Mordeson, J. N., , Fuzzy Sets Systems 45 (1992), 83-91. MR1148455DOI
- Mehmood, F., Shi, F.-G., , Mathematics 9 (2021), 1118. DOI
- Mehmood, F., Shi, F.-G., Hayat, K., A new approach to the fuzzification of rings., J. Nonlinear Convex Analysis 21 (12) (2020), 2637-2646. MR4194706
- Močkoř, J., , Int. J. General Systems 42 (2013), 67-78. MR2990334DOI
- Öztürk, M. A., Jun, Y. B., Yazarli, H., A new view of fuzzy gamma rings., Hacettepe J. Math. Statist. 39 (2010), 3, 365-378. MR2732632
- Pang, B., , Quaest. Math. 43 (2020), 11, 1541-1561. MR4181551DOI
- Pang, B., -fuzzifying convex structures as -convex structures., J. Nonlinear Convex Anal. 21 (2020), 12, 2831-2841. MR4194723
- Pang, B., , Computat. Appl. Math. (2020), 39-41. MR4059965DOI
- Pang, B., Shi, F.-G., , Quaest. Math. 41 (2018), 8, 1021-1043. MR3885942DOI
- Pei, D., Fan, T., , Int. J. General Systems 38 (2009), 3, 255-271. MR2527845DOI
- Rosa, M. V., , Fuzzy Sets Systems 62 (1994), 97-100. MR1259888DOI
- Shen, C., Shi, F.-G., -convex systems and the categorical isomorphism to Scott-hull operators., Iranian J. Fuzzy Systems 15 (2018), 2, 23-40. MR3840019
- Shi, F.-G., Theory of -nested set and -nested sets and applications., Fuzzy Systems Math. (1995), 65-72. MR1384670
- Shi, F.-G., Xin, X., , J. Advanced Res. Pure Math. 3 (2011), 4, 92-108. MR2859291DOI
- Shi, F.-G., Xiu, Z. Y., , J. Appl. Math. 3 (2014), 1-12. MR3259199DOI
- Shi, F.-G., Xiu, Z. Y., , J. Nonlinear Sci. Appl. 10 (2017), 3655-3669. MR3680307DOI
- Shi, Y., Huang, H. L., A characterization of strong -concave spaces., J. Nonlinear Convex Anal. 21 (2020), 12, 2771-2781. MR4194718
- Vel, M. L. J. van de, Theory of Vonvex Structures., North Holland, N. Y. 1993. MR1234493
- Wang, G. J., , Fuzzy Sets Systems 47 (1992), 351-376. MR1166284DOI
- Wang, K., Shi, F.-G., -fuzzifying topological convex spaces., Iranian J. Fuzzy Systems 15, (2018), 6, 159-174. MR3931764
- Wei, X. W., Pang, B., Mi, J. S., , Inform, Sci. 580 (2021), 283-310. MR4308034DOI
- Wei, X. W., Pang, B., Mi, J. S., , Int. J. General Systems 51 (2022), 3, 277-312. MR4407612DOI
- Wei, X. W., Wang, B., Fuzzy (restricted) hull operators and fuzzy convex structures on -sets., J. Nonlinear Convex Anal. 21 (2020), 12, 2805-2815. MR4194721
- Wen, Y. F., Zhong, Y., Shi, F.-G., , J. Intell. Fuzzy Systems 33 (2017), 4031-4041. MR3751405DOI
- Williams, D. R. P., Latha, K. B., Chandrasekeran, E., Fuzzy bi--ideals in -semigroups., Hacettepe J. Math. Statist. 38 (2009), 1, 1-15. MR2530686
- Wu, J., , Int. J. Theoret. Physics 43 (2004), 349-358. MR2080537DOI
- Yang, H., Li, E. Q., A new approach to interval operators in -convex spaces., J. Nonlinear Convex Anal. 21 (2020), 12, 2705-2714. MR4194712
- Zhang, Q. W., , Hennan Sci. 34 (2016), 8, 1211-1214. DOI
- Zhang, Q. W., , Hennan Sci. 35 (2017), 10, 1567-1569. MR2490189DOI
- Zhao, F. F., Huang, H. L., The relationships among -ordered hull operators, restricted -hull operators and strong -fuzzy convex structures., J. Nonlinear Convex Anal. 21 (2020), 12, 2817-2829. MR4194722
- Zhong, Y., Shi, F.-G., Characterizations of -fuzzy topological degrees., Iranian J. Fuzzy Syst. 15 (2018), 4, 129-149. MR3823001
- Zhou, X. W., Shi, F.-G., , Filomat. 34 (2020), 4767-4781. MR4290887DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.