Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors

Sungjin Ra; Choljin Jang; Jinmyong Hong

Applications of Mathematics (2024)

  • Volume: 69, Issue: 4, page 513-540
  • ISSN: 0862-7940

Abstract

top
We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus 𝕋 d , the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.

How to cite

top

Ra, Sungjin, Jang, Choljin, and Hong, Jinmyong. "Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors." Applications of Mathematics 69.4 (2024): 513-540. <http://eudml.org/doc/299494>.

@article{Ra2024,
abstract = {We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb \{T\}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.},
author = {Ra, Sungjin, Jang, Choljin, Hong, Jinmyong},
journal = {Applications of Mathematics},
keywords = {quantum energy-transport model; time-discretization; periodic boundary value problem; bipolar semiconductor},
language = {eng},
number = {4},
pages = {513-540},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors},
url = {http://eudml.org/doc/299494},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Ra, Sungjin
AU - Jang, Choljin
AU - Hong, Jinmyong
TI - Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 513
EP - 540
AB - We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb {T}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.
LA - eng
KW - quantum energy-transport model; time-discretization; periodic boundary value problem; bipolar semiconductor
UR - http://eudml.org/doc/299494
ER -

References

top
  1. Chen, L., Chen, X.-Q., Jüngel, A., 10.3934/krm.2011.4.1049, Kinet. Relat. Models 4 (2011), 1049-1062. (2011) Zbl1246.35025MR2861585DOI10.3934/krm.2011.4.1049
  2. Chen, R.-C., Liu, J.-L., 10.1016/j.jcp.2004.10.006, J. Comput. Phys. 204 (2005), 131-156. (2005) Zbl1143.82324DOI10.1016/j.jcp.2004.10.006
  3. Degond, P., Gallego, S., Méhats, F., 10.4310/CMS.2007.v5.n4.a8, Commun. Math. Sci. 5 (2007), 887-908. (2007) Zbl1134.82016MR2375052DOI10.4310/CMS.2007.v5.n4.a8
  4. Degond, P., Méhats, F., Ringhofer, C., 10.1007/s10955-004-8823-3, J. Stat. Phys. 118 (2005), 625-667. (2005) Zbl1126.82314MR2123650DOI10.1007/s10955-004-8823-3
  5. Dong, J., Ju, Q., A stationary solution to a 1-dimensional simplified energy-transport model for semiconductors, Chin. J. Contemp. Math. 35 (2014), 377-384. (2014) Zbl1324.35179MR3290011
  6. Dong, J., Ju, Q., 10.1016/j.nonrwa.2016.10.009, Nonlinear Anal., Real World Appl. 35 (2017), 61-74. (2017) Zbl1360.82086MR3595317DOI10.1016/j.nonrwa.2016.10.009
  7. Grubin, H. L., Kreskovsky, J. P., 10.1016/0038-1101(89)90192-5, Solid-State Electr. 32 (1989), 1071-1075. (1989) DOI10.1016/0038-1101(89)90192-5
  8. Hu, H., Zhang, K., 10.3934/dcdsb.2014.19.1601, Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 1601-1626. (2014) Zbl1304.35092MR3228859DOI10.3934/dcdsb.2014.19.1601
  9. Hu, H., Zhang, K., 10.3934/krm.2015.8.117, Kinet. Relat. Models 8 (2015), 117-151. (2015) Zbl1332.35035MR3294215DOI10.3934/krm.2015.8.117
  10. Jüngel, A., 10.1007/978-3-0348-8334-4, Progress in Nonlinear Differential Equations and their Applications 41. Birkhäuser, Basel (2001). (2001) Zbl0969.35001MR1818867DOI10.1007/978-3-0348-8334-4
  11. Jüngel, A., Matthes, D., 10.1137/060676878, SIAM J. Math. Anal. 39 (2008), 1996-2015. (2008) Zbl1160.35428MR2390322DOI10.1137/060676878
  12. Jüngel, A., Matthes, D., Milišić, J. P., 10.1137/050644823, SIAM J. Appl. Math. 67 (2006), 46-68. (2006) Zbl1121.35117MR2272614DOI10.1137/050644823
  13. Jüngel, A., Milišić, J.-P., 10.1016/j.nonrwa.2010.08.026, Nonlinear Anal., Real World Appl. 12 (2011), 1033-1046. (2011) Zbl1206.35152MR2736191DOI10.1016/j.nonrwa.2010.08.026
  14. Jüngel, A., Pinnau, R., Röhrig, E., 10.1002/mma.2715, Math. Methods Appl. Sci. 36 (2013), 1701-1712. (2013) Zbl1275.35124MR3092288DOI10.1002/mma.2715
  15. Kim, Y.-H., Ra, S., Kim, S.-C., 10.1016/j.nonrwa.2020.103261, Nonlinear Anal., Real World Appl. 59 (2021), Article ID 103261, 18 pages. (2021) Zbl1468.35202MR4177987DOI10.1016/j.nonrwa.2020.103261
  16. Markowich, P. A., Ringhofer, C. A., Schmeiser, C., 10.1007/978-3-7091-6961-2, Springer, Vienna (1990). (1990) Zbl0765.35001MR1063852DOI10.1007/978-3-7091-6961-2
  17. Ri, J., Ra, S., Mun, K., 10.1016/j.nonrwa.2022.103748, Nonlinear Anal., Real World Appl. 69 (2023), Article ID 103748, 18 pages. (2023) Zbl1501.35397MR4483369DOI10.1016/j.nonrwa.2022.103748
  18. Simon, J., 10.1007/BF01762360, Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. (1987) Zbl0629.46031MR0916688DOI10.1007/BF01762360
  19. Wigner, E. P., 10.1103/PhysRev.40.749, Phys. Rev., II. Ser. 40 (1932), 749-759. (1932) Zbl0004.38201DOI10.1103/PhysRev.40.749
  20. Zamponi, N., Jüngel, A., 10.1016/j.jde.2014.12.007, J. Differ. Equations 258 (2015), 2339-2363. (2015) Zbl1357.35182MR3306341DOI10.1016/j.jde.2014.12.007
  21. Zhang, G., Li, H.-L., Zhang, K., 10.1016/j.jde.2008.06.019, J. Differ. Equations 245 (2008), 1433-1453 9999DOI99999 10.1016/j.jde.2008.06.019 . (2008) Zbl1154.35071MR2436449DOI10.1016/j.jde.2008.06.019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.