Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors
Sungjin Ra; Choljin Jang; Jinmyong Hong
Applications of Mathematics (2024)
- Volume: 69, Issue: 4, page 513-540
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRa, Sungjin, Jang, Choljin, and Hong, Jinmyong. "Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors." Applications of Mathematics 69.4 (2024): 513-540. <http://eudml.org/doc/299494>.
@article{Ra2024,
abstract = {We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb \{T\}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.},
author = {Ra, Sungjin, Jang, Choljin, Hong, Jinmyong},
journal = {Applications of Mathematics},
keywords = {quantum energy-transport model; time-discretization; periodic boundary value problem; bipolar semiconductor},
language = {eng},
number = {4},
pages = {513-540},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors},
url = {http://eudml.org/doc/299494},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Ra, Sungjin
AU - Jang, Choljin
AU - Hong, Jinmyong
TI - Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 513
EP - 540
AB - We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb {T}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.
LA - eng
KW - quantum energy-transport model; time-discretization; periodic boundary value problem; bipolar semiconductor
UR - http://eudml.org/doc/299494
ER -
References
top- Chen, L., Chen, X.-Q., Jüngel, A., 10.3934/krm.2011.4.1049, Kinet. Relat. Models 4 (2011), 1049-1062. (2011) Zbl1246.35025MR2861585DOI10.3934/krm.2011.4.1049
- Chen, R.-C., Liu, J.-L., 10.1016/j.jcp.2004.10.006, J. Comput. Phys. 204 (2005), 131-156. (2005) Zbl1143.82324DOI10.1016/j.jcp.2004.10.006
- Degond, P., Gallego, S., Méhats, F., 10.4310/CMS.2007.v5.n4.a8, Commun. Math. Sci. 5 (2007), 887-908. (2007) Zbl1134.82016MR2375052DOI10.4310/CMS.2007.v5.n4.a8
- Degond, P., Méhats, F., Ringhofer, C., 10.1007/s10955-004-8823-3, J. Stat. Phys. 118 (2005), 625-667. (2005) Zbl1126.82314MR2123650DOI10.1007/s10955-004-8823-3
- Dong, J., Ju, Q., A stationary solution to a 1-dimensional simplified energy-transport model for semiconductors, Chin. J. Contemp. Math. 35 (2014), 377-384. (2014) Zbl1324.35179MR3290011
- Dong, J., Ju, Q., 10.1016/j.nonrwa.2016.10.009, Nonlinear Anal., Real World Appl. 35 (2017), 61-74. (2017) Zbl1360.82086MR3595317DOI10.1016/j.nonrwa.2016.10.009
- Grubin, H. L., Kreskovsky, J. P., 10.1016/0038-1101(89)90192-5, Solid-State Electr. 32 (1989), 1071-1075. (1989) DOI10.1016/0038-1101(89)90192-5
- Hu, H., Zhang, K., 10.3934/dcdsb.2014.19.1601, Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 1601-1626. (2014) Zbl1304.35092MR3228859DOI10.3934/dcdsb.2014.19.1601
- Hu, H., Zhang, K., 10.3934/krm.2015.8.117, Kinet. Relat. Models 8 (2015), 117-151. (2015) Zbl1332.35035MR3294215DOI10.3934/krm.2015.8.117
- Jüngel, A., 10.1007/978-3-0348-8334-4, Progress in Nonlinear Differential Equations and their Applications 41. Birkhäuser, Basel (2001). (2001) Zbl0969.35001MR1818867DOI10.1007/978-3-0348-8334-4
- Jüngel, A., Matthes, D., 10.1137/060676878, SIAM J. Math. Anal. 39 (2008), 1996-2015. (2008) Zbl1160.35428MR2390322DOI10.1137/060676878
- Jüngel, A., Matthes, D., Milišić, J. P., 10.1137/050644823, SIAM J. Appl. Math. 67 (2006), 46-68. (2006) Zbl1121.35117MR2272614DOI10.1137/050644823
- Jüngel, A., Milišić, J.-P., 10.1016/j.nonrwa.2010.08.026, Nonlinear Anal., Real World Appl. 12 (2011), 1033-1046. (2011) Zbl1206.35152MR2736191DOI10.1016/j.nonrwa.2010.08.026
- Jüngel, A., Pinnau, R., Röhrig, E., 10.1002/mma.2715, Math. Methods Appl. Sci. 36 (2013), 1701-1712. (2013) Zbl1275.35124MR3092288DOI10.1002/mma.2715
- Kim, Y.-H., Ra, S., Kim, S.-C., 10.1016/j.nonrwa.2020.103261, Nonlinear Anal., Real World Appl. 59 (2021), Article ID 103261, 18 pages. (2021) Zbl1468.35202MR4177987DOI10.1016/j.nonrwa.2020.103261
- Markowich, P. A., Ringhofer, C. A., Schmeiser, C., 10.1007/978-3-7091-6961-2, Springer, Vienna (1990). (1990) Zbl0765.35001MR1063852DOI10.1007/978-3-7091-6961-2
- Ri, J., Ra, S., Mun, K., 10.1016/j.nonrwa.2022.103748, Nonlinear Anal., Real World Appl. 69 (2023), Article ID 103748, 18 pages. (2023) Zbl1501.35397MR4483369DOI10.1016/j.nonrwa.2022.103748
- Simon, J., 10.1007/BF01762360, Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. (1987) Zbl0629.46031MR0916688DOI10.1007/BF01762360
- Wigner, E. P., 10.1103/PhysRev.40.749, Phys. Rev., II. Ser. 40 (1932), 749-759. (1932) Zbl0004.38201DOI10.1103/PhysRev.40.749
- Zamponi, N., Jüngel, A., 10.1016/j.jde.2014.12.007, J. Differ. Equations 258 (2015), 2339-2363. (2015) Zbl1357.35182MR3306341DOI10.1016/j.jde.2014.12.007
- Zhang, G., Li, H.-L., Zhang, K., 10.1016/j.jde.2008.06.019, J. Differ. Equations 245 (2008), 1433-1453 9999DOI99999 10.1016/j.jde.2008.06.019 . (2008) Zbl1154.35071MR2436449DOI10.1016/j.jde.2008.06.019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.