Sliding mode differentiator via improved adaptive notch filter

Juan Wang; Hehong Zhang; Yuanlong Yu; Zhihong Dan; Gaoxi Xiao; Qiuming Gu; Chao Zhai

Kybernetika (2022)

  • Volume: 58, Issue: 4, page 547-563
  • ISSN: 0023-5954

Abstract

top
To tackle the difficulty in tuning the parameters of sliding mode differentiator (SMD), an improved adaptive notch filter based real-time parameter tuning scheme (denoted as ANF-SMD) is presented. Specifically, the integral feedback of the system output errors is introduced in constructing the cost function for the adaptive notch filter so as to estimate the real-time amplitude and frequency of given inputs. Then, upon the deterministic formula between the parameters of the SMD and the input signals, the parameters of the SMD can be adjusted adaptively as inputs vary. Simulation results show that the proposed ANF-SMD scheme performs well in signal filtering and differentiation estimation. The effectiveness of the proposed ANF-SMD is further experimentally verified on the pressure signal processing for the altitude ground test facility.

How to cite

top

Wang, Juan, et al. "Sliding mode differentiator via improved adaptive notch filter." Kybernetika 58.4 (2022): 547-563. <http://eudml.org/doc/299502>.

@article{Wang2022,
abstract = {To tackle the difficulty in tuning the parameters of sliding mode differentiator (SMD), an improved adaptive notch filter based real-time parameter tuning scheme (denoted as ANF-SMD) is presented. Specifically, the integral feedback of the system output errors is introduced in constructing the cost function for the adaptive notch filter so as to estimate the real-time amplitude and frequency of given inputs. Then, upon the deterministic formula between the parameters of the SMD and the input signals, the parameters of the SMD can be adjusted adaptively as inputs vary. Simulation results show that the proposed ANF-SMD scheme performs well in signal filtering and differentiation estimation. The effectiveness of the proposed ANF-SMD is further experimentally verified on the pressure signal processing for the altitude ground test facility.},
author = {Wang, Juan, Zhang, Hehong, Yu, Yuanlong, Dan, Zhihong, Xiao, Gaoxi, Gu, Qiuming, Zhai, Chao},
journal = {Kybernetika},
keywords = {sliding mode differentiator; parameter tuning scheme; adaptive notch filter; altitude ground test facility},
language = {eng},
number = {4},
pages = {547-563},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Sliding mode differentiator via improved adaptive notch filter},
url = {http://eudml.org/doc/299502},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Wang, Juan
AU - Zhang, Hehong
AU - Yu, Yuanlong
AU - Dan, Zhihong
AU - Xiao, Gaoxi
AU - Gu, Qiuming
AU - Zhai, Chao
TI - Sliding mode differentiator via improved adaptive notch filter
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 4
SP - 547
EP - 563
AB - To tackle the difficulty in tuning the parameters of sliding mode differentiator (SMD), an improved adaptive notch filter based real-time parameter tuning scheme (denoted as ANF-SMD) is presented. Specifically, the integral feedback of the system output errors is introduced in constructing the cost function for the adaptive notch filter so as to estimate the real-time amplitude and frequency of given inputs. Then, upon the deterministic formula between the parameters of the SMD and the input signals, the parameters of the SMD can be adjusted adaptively as inputs vary. Simulation results show that the proposed ANF-SMD scheme performs well in signal filtering and differentiation estimation. The effectiveness of the proposed ANF-SMD is further experimentally verified on the pressure signal processing for the altitude ground test facility.
LA - eng
KW - sliding mode differentiator; parameter tuning scheme; adaptive notch filter; altitude ground test facility
UR - http://eudml.org/doc/299502
ER -

References

top
  1. Alattas, K. A., Mostafaee, J., Alanazi, A. K., Mobayen, S., Vu, M. T., Zhilenkov, A., Abo-Dief, H. M., , Mathematics 10 (2022), 1, 43. DOI
  2. Alwi, H., Edwards, C., , Automatica 49 (2013), 2, 642-651. MR3004735DOI
  3. Ang, K. H., Chong, G., Li, Y., , IEEE Trans. Control Syst. Technol. 13 (2005), 4, 559-576. DOI
  4. Ashwood, P. F., , J. Aircr. 10 (1973), 8, 468-474. DOI
  5. Barbot, J.-P., Levant, A., Livne, M., Lunz, D., , Automatica 112 (2020). MR4024634DOI
  6. Castillo-Toledo, B., Gennaro, S. D., López-Cuevas, A., , Kybernetika 51 (2015), 1, 20-35. MR3333831DOI
  7. Deza, F., Busvelle, E., Gauthier, J. P., Rakotopara, D., , Syst. Control Lett. 18 (1992), 4, 295-299. MR1158656DOI
  8. Ghanes, M., Barbot, J.-P., Fridman, L., Levant, A., Boisliveau, R., , IEEE Trans. Automat. Control 65 (2020), 12, 5407-5414. MR4184867DOI
  9. Ghanes, M., Moreno, J. A., Barbot, J.-P., 10.1016/j.automatica.2021.110111, Automatica 138 (2022), p.110111. MR4374724DOI10.1016/j.automatica.2021.110111
  10. Gui, H., 10.1109/TAC.2021.3062159, IEEE Trans. Automat. Control (2021). MR4349188DOI10.1109/TAC.2021.3062159
  11. Han, J., , IEEE Trans. Ind. Electron. 56 (2009), 3, 900-906. DOI
  12. Hu, J. P., , Kybernetika 45 (2009), 5, 768-784. Zbl1190.93003MR2599111DOI
  13. Hu, J. P., Chen, G. R., Li, H. X., Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays., Kybernetika 47 (2011), 4, 630-643. Zbl1227.93008MR2884865
  14. Ibrir, S., , Automatica 40 (2004), 3, 397-405. MR2145267DOI
  15. Kilic, Dogushan, Brem, Benjamin, T., Klein, Felix, al., et, , Environ. Sci. Technol. 51 (2017), 7, 3621-3629. DOI
  16. Levant, A., , Automatica 34 (1998), 3, 379-384. Zbl0915.93013MR1623077DOI
  17. Levant, A., Yu, X., , IEEE Trans. Automat. Contr. 63 (2018), 9, 3061-3067. MR3849410DOI
  18. Liu, G., Li, J., Zheng, S., Chen, Q., Liu, H., , IEEE Trans. Ind. Electron. 67 (2020), 10, 8599-8607. DOI
  19. Meller, M., , IEEE Trans. Signal Process. 63 (2015), 22, 6003-6012. MR3411373DOI
  20. Nasiri, M., Mobayen, S., Arzani, A., , CSEE J. Power Energy Syst. DOI
  21. Oliveira, T. R., Rodrigues, V. H. P., Fridman, L., , IEEE Trans. Automat. Control 64 (2019), 5, 2053-2060. MR3951047DOI
  22. Orlov, Y., Aoustin, Y., Chevallereau, C., , IEEE Trans. Automat. Control 56 (2011), 3, 614-618. MR2799077DOI
  23. Rinaldi, G., Menon, P. P., Edwards, C., Ferrara, A., Shtessel, Y., , Automatica 129 (2021), p.109656. MR4253862DOI
  24. Su, Y. X., Zheng, C. H., Mueller, P. C., Duan, B. Y., , IEEE Trans. Control Syst. Technol. 14 (2006), 5, 937-942. DOI
  25. Wang, X., Chen, Z., Yang, G., , IEEE Trans. Automat. Control 52 (2007), 9, 1731-1737. MR2352454DOI
  26. Wang, F., He, L., , IEEE Trans. Ind. Electron. 68 (2021), 2, 972-981. DOI
  27. Wang, J., Xie, Y., Y, Yu, Xiao, G., Zhang, L., Dan, Z., al., et, A practical parameter tuning algorithm for super-twisting algorithm based differentiator and its application in altitude ground test facility., ISA Trans., under review. 
  28. Wang, J., Zhang, H., Xiao, G., Dan, Z., Zhang, S., Xie, Y., A comparison study of tracking differentiator and robust exact differentiator., In: 2020 China Automation Conference 2020, pp. 1359-1364. 
  29. Wu, F., Gao, L., Wu, X., Feng, X., Leng, L., Li, Y., Aerodynamic modeling and transient performance improvement of a free jet altitude test facility., In: International Conference on Artificial Intelligence and Security, Springer, Singapore 2020, pp. 618-630. 
  30. Wu, W., Sun, H., Cai, Y., Jiang, S., Xiong, J., , IEEE Trans. Signal Process. 68 (2020), 2912-2924. MR4144921DOI
  31. Yang, H., Cheng, L., Zhang, J., Xia, Y., , IEEE Trans Syst Man Cybern.: Syst. 51 (2021), 1, 601-609. DOI
  32. Yan, Y., Yu, S., Yu, X., , IEEE Trans. Automat. Control 66 (2021), 6, 2817-2824. MR4265118DOI
  33. Zhang, H., Xiao, G., Yun, X., Xie, Y., , IEEE Trans. Ind. Electron. 68 (2021), 4, 3359-3369. DOI
  34. Zhang, H., Xie, Y., Xiao, G., Zhai, C., Long, Z., , IEEE Trans. Control Syst. Technol. 27 (2019), 4, 1728-1734. DOI
  35. Zhao, L., Cheng, H., Zhang, J., Xia, Y., , IEEE Trans. Ind. Electron. 66 (2019), 11, 8659-8669. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.