Symmetries in connected graded algebras and their PBW-deformations
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1255-1272
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXu, Yongjun, and Zhang, Xin. "Symmetries in connected graded algebras and their PBW-deformations." Czechoslovak Mathematical Journal 73.4 (2023): 1255-1272. <http://eudml.org/doc/299505>.
@article{Xu2023,
abstract = {We focus on connected graded algebras and their PBW-deformations endowed with additional symmetric structures. Many well-known algebras such as negative parts of Drinfeld-Jimbo’s quantum groups, cubic Artin-Schelter algebras and three-dimensional Sklyanin algebras appear in our research framework. As an application, we investigate a $\mathcal \{K\}_2$ algebra $\mathcal \{A\}$ which was introduced to compute the cohomology ring of the Fomin-Kirillov algebra $\mathcal \{FK\}_3$, and explicitly construct all the (self-)symmetric and sign-(self-)symmetric PBW-deformations of $\mathcal \{A\}$.},
author = {Xu, Yongjun, Zhang, Xin},
journal = {Czechoslovak Mathematical Journal},
keywords = {connected graded algebra; PBW-deformation; self-symmetry; sign-symmetry; $\mathcal \{K\}_2$ algebra},
language = {eng},
number = {4},
pages = {1255-1272},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Symmetries in connected graded algebras and their PBW-deformations},
url = {http://eudml.org/doc/299505},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Xu, Yongjun
AU - Zhang, Xin
TI - Symmetries in connected graded algebras and their PBW-deformations
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1255
EP - 1272
AB - We focus on connected graded algebras and their PBW-deformations endowed with additional symmetric structures. Many well-known algebras such as negative parts of Drinfeld-Jimbo’s quantum groups, cubic Artin-Schelter algebras and three-dimensional Sklyanin algebras appear in our research framework. As an application, we investigate a $\mathcal {K}_2$ algebra $\mathcal {A}$ which was introduced to compute the cohomology ring of the Fomin-Kirillov algebra $\mathcal {FK}_3$, and explicitly construct all the (self-)symmetric and sign-(self-)symmetric PBW-deformations of $\mathcal {A}$.
LA - eng
KW - connected graded algebra; PBW-deformation; self-symmetry; sign-symmetry; $\mathcal {K}_2$ algebra
UR - http://eudml.org/doc/299505
ER -
References
top- Berger, R., 10.1006/jabr.2000.8703, J. Algebra 239 (2001), 705-734. (2001) Zbl1035.16023MR1832913DOI10.1006/jabr.2000.8703
- Berger, R., Ginzburg, V., 10.1016/j.jalgebra.2006.03.011, J. Algebra 304 (2006), 577-601. (2006) Zbl1151.16026MR2256407DOI10.1016/j.jalgebra.2006.03.011
- Berger, R., Taillefer, R., 10.4171/JNCG/6, J. Noncommut. Geom. 1 (2007), 241-270. (2007) Zbl1161.16022MR2308306DOI10.4171/JNCG/6
- Braverman, A., Gaitsgory, D., 10.1006/jabr.1996.0122, J. Algebra 181 (1996), 315-328. (1996) Zbl0860.17002MR1383469DOI10.1006/jabr.1996.0122
- Cassidy, T., Shelton, B., 10.1515/CRELLE.2007.065, J. Reine Angew. Math. 610 (2007), 1-12. (2007) Zbl1147.16022MR2359848DOI10.1515/CRELLE.2007.065
- Cassidy, T., Shelton, B., 10.1007/s00209-007-0263-8, Math. Z. 260 (2008), 93-114. (2008) Zbl1149.16026MR2413345DOI10.1007/s00209-007-0263-8
- Etingof, P., Ginzburg, V., 10.4171/JEMS/235, J. Eur. Math. Soc. (JEMS) 12 (2010), 1371-1416. (2010) Zbl1204.14004MR2734346DOI10.4171/JEMS/235
- Fløystad, G., Vatne, J. E., 10.1016/j.jalgebra.2005.08.032, J. Algebra 302 (2006), 116-155. (2006) Zbl1159.16026MR2236596DOI10.1016/j.jalgebra.2005.08.032
- Fuchs, J., Schellekens, B., Schweigert, C., 10.1007/BF02101182, Commun. Math. Phys. 180 (1996), 39-97. (1996) Zbl0863.17020MR1403859DOI10.1007/BF02101182
- Gavrilik, A. M., Klimyk, A. U., 10.1007/BF00420371, Lett. Math. Phys. 21 (1991), 215-220. (1991) Zbl0735.17020MR1102131DOI10.1007/BF00420371
- Heckenberger, I., Vendramin, L., 10.1007/s10468-018-9830-4, Algebr. Represent. Theory 22 (2019), 1513-1532. (2019) Zbl1454.16037MR4034793DOI10.1007/s10468-018-9830-4
- Humphreys, J. E., 10.1007/978-1-4612-6398-2, Graduate Texts in Mathematics 9. Springer, New York (2006). (2006) Zbl0447.17001MR0499562DOI10.1007/978-1-4612-6398-2
- Iorgov, N. Z., Klimyk, A. U., The nonstandard deformation for a root of unity, Methods Funct. Anal. Topol. 6 (2000), 56-71. (2000) Zbl0980.17009MR1903121
- Iorgov, N. Z., Klimyk, A. U., 10.1155/IJMMS.2005.225, Int. J. Math. Math. Sci. 2005 (2005), 225-262. (2005) Zbl1127.17016MR2143754DOI10.1155/IJMMS.2005.225
- Kolb, S., Pellegrini, J., 10.1016/j.jalgebra.2011.04.001, J. Algebra 336 (2011), 395-416. (2011) Zbl1266.17011MR2802552DOI10.1016/j.jalgebra.2011.04.001
- Letzter, G., 10.4153/CJM-1997-059-4, Can. J. Math. 49 (1997), 1206-1223. (1997) Zbl0898.17005MR1611652DOI10.4153/CJM-1997-059-4
- Letzter, G., 10.1006/jabr.1999.8015, J. Algebra 220 (1999), 729-767. (1999) Zbl0956.17007MR1717368DOI10.1006/jabr.1999.8015
- Letzter, G., Coideal subalgebras and quantum symmetric pairs, New Directions in Hopf Algebras Mathematical Sciences Research Institute Publications 43. Cambridge University Press, Cambridge (2002), 117-166. (2002) Zbl1025.17005MR1913438
- Letzter, G., 10.1007/s00031-003-0719-9, Transform. Groups 8 (2003), 261-292. (2003) Zbl1107.17010MR1996417DOI10.1007/s00031-003-0719-9
- Polishchuk, A., Positselski, L., 10.1090/ulect/037, University Lecture Series 37. AMS, Providence (2005). (2005) Zbl1145.16009MR2177131DOI10.1090/ulect/037
- Ştefan, D., Vay, C., 10.1016/j.aim.2016.01.001, Adv. Math. 291 (2016), 584-620. (2016) Zbl1366.18015MR3459024DOI10.1016/j.aim.2016.01.001
- Walton, C. M., On Degenerations and Deformations of Sklyanin Algebras: Ph.D. Thesis, University of Michigan, Ann Arbor (2011). (2011) MR2942216
- Xu, Y., Huang, H.-L., Wang, D., 10.1016/j.jpaa.2018.06.017, J. Pure Appl. Algebra 223 (2019), 1531-1547. (2019) Zbl1439.17019MR3906516DOI10.1016/j.jpaa.2018.06.017
- Xu, Y., Wang, D., Chen, J., 10.1142/S0219498816501796, J. Algebra. Appl. 15 (2016), Article ID 1650179, 13 pages. (2016) Zbl1366.17016MR3575969DOI10.1142/S0219498816501796
- Xu, Y., Yang, S., 10.1016/j.jalgebra.2013.08.011, J. Algebra 408 (2014), 222-249. (2014) Zbl1366.17017MR3197182DOI10.1016/j.jalgebra.2013.08.011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.