Symmetries in connected graded algebras and their PBW-deformations

Yongjun Xu; Xin Zhang

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1255-1272
  • ISSN: 0011-4642

Abstract

top
We focus on connected graded algebras and their PBW-deformations endowed with additional symmetric structures. Many well-known algebras such as negative parts of Drinfeld-Jimbo’s quantum groups, cubic Artin-Schelter algebras and three-dimensional Sklyanin algebras appear in our research framework. As an application, we investigate a 𝒦 2 algebra 𝒜 which was introduced to compute the cohomology ring of the Fomin-Kirillov algebra ℱ𝒦 3 , and explicitly construct all the (self-)symmetric and sign-(self-)symmetric PBW-deformations of 𝒜 .

How to cite

top

Xu, Yongjun, and Zhang, Xin. "Symmetries in connected graded algebras and their PBW-deformations." Czechoslovak Mathematical Journal 73.4 (2023): 1255-1272. <http://eudml.org/doc/299505>.

@article{Xu2023,
abstract = {We focus on connected graded algebras and their PBW-deformations endowed with additional symmetric structures. Many well-known algebras such as negative parts of Drinfeld-Jimbo’s quantum groups, cubic Artin-Schelter algebras and three-dimensional Sklyanin algebras appear in our research framework. As an application, we investigate a $\mathcal \{K\}_2$ algebra $\mathcal \{A\}$ which was introduced to compute the cohomology ring of the Fomin-Kirillov algebra $\mathcal \{FK\}_3$, and explicitly construct all the (self-)symmetric and sign-(self-)symmetric PBW-deformations of $\mathcal \{A\}$.},
author = {Xu, Yongjun, Zhang, Xin},
journal = {Czechoslovak Mathematical Journal},
keywords = {connected graded algebra; PBW-deformation; self-symmetry; sign-symmetry; $\mathcal \{K\}_2$ algebra},
language = {eng},
number = {4},
pages = {1255-1272},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Symmetries in connected graded algebras and their PBW-deformations},
url = {http://eudml.org/doc/299505},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Xu, Yongjun
AU - Zhang, Xin
TI - Symmetries in connected graded algebras and their PBW-deformations
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1255
EP - 1272
AB - We focus on connected graded algebras and their PBW-deformations endowed with additional symmetric structures. Many well-known algebras such as negative parts of Drinfeld-Jimbo’s quantum groups, cubic Artin-Schelter algebras and three-dimensional Sklyanin algebras appear in our research framework. As an application, we investigate a $\mathcal {K}_2$ algebra $\mathcal {A}$ which was introduced to compute the cohomology ring of the Fomin-Kirillov algebra $\mathcal {FK}_3$, and explicitly construct all the (self-)symmetric and sign-(self-)symmetric PBW-deformations of $\mathcal {A}$.
LA - eng
KW - connected graded algebra; PBW-deformation; self-symmetry; sign-symmetry; $\mathcal {K}_2$ algebra
UR - http://eudml.org/doc/299505
ER -

References

top
  1. Berger, R., 10.1006/jabr.2000.8703, J. Algebra 239 (2001), 705-734. (2001) Zbl1035.16023MR1832913DOI10.1006/jabr.2000.8703
  2. Berger, R., Ginzburg, V., 10.1016/j.jalgebra.2006.03.011, J. Algebra 304 (2006), 577-601. (2006) Zbl1151.16026MR2256407DOI10.1016/j.jalgebra.2006.03.011
  3. Berger, R., Taillefer, R., 10.4171/JNCG/6, J. Noncommut. Geom. 1 (2007), 241-270. (2007) Zbl1161.16022MR2308306DOI10.4171/JNCG/6
  4. Braverman, A., Gaitsgory, D., 10.1006/jabr.1996.0122, J. Algebra 181 (1996), 315-328. (1996) Zbl0860.17002MR1383469DOI10.1006/jabr.1996.0122
  5. Cassidy, T., Shelton, B., 10.1515/CRELLE.2007.065, J. Reine Angew. Math. 610 (2007), 1-12. (2007) Zbl1147.16022MR2359848DOI10.1515/CRELLE.2007.065
  6. Cassidy, T., Shelton, B., 10.1007/s00209-007-0263-8, Math. Z. 260 (2008), 93-114. (2008) Zbl1149.16026MR2413345DOI10.1007/s00209-007-0263-8
  7. Etingof, P., Ginzburg, V., 10.4171/JEMS/235, J. Eur. Math. Soc. (JEMS) 12 (2010), 1371-1416. (2010) Zbl1204.14004MR2734346DOI10.4171/JEMS/235
  8. Fløystad, G., Vatne, J. E., 10.1016/j.jalgebra.2005.08.032, J. Algebra 302 (2006), 116-155. (2006) Zbl1159.16026MR2236596DOI10.1016/j.jalgebra.2005.08.032
  9. Fuchs, J., Schellekens, B., Schweigert, C., 10.1007/BF02101182, Commun. Math. Phys. 180 (1996), 39-97. (1996) Zbl0863.17020MR1403859DOI10.1007/BF02101182
  10. Gavrilik, A. M., Klimyk, A. U., 10.1007/BF00420371, Lett. Math. Phys. 21 (1991), 215-220. (1991) Zbl0735.17020MR1102131DOI10.1007/BF00420371
  11. Heckenberger, I., Vendramin, L., 10.1007/s10468-018-9830-4, Algebr. Represent. Theory 22 (2019), 1513-1532. (2019) Zbl1454.16037MR4034793DOI10.1007/s10468-018-9830-4
  12. Humphreys, J. E., 10.1007/978-1-4612-6398-2, Graduate Texts in Mathematics 9. Springer, New York (2006). (2006) Zbl0447.17001MR0499562DOI10.1007/978-1-4612-6398-2
  13. Iorgov, N. Z., Klimyk, A. U., The nonstandard deformation U q ' ( s o n ) for q a root of unity, Methods Funct. Anal. Topol. 6 (2000), 56-71. (2000) Zbl0980.17009MR1903121
  14. Iorgov, N. Z., Klimyk, A. U., 10.1155/IJMMS.2005.225, Int. J. Math. Math. Sci. 2005 (2005), 225-262. (2005) Zbl1127.17016MR2143754DOI10.1155/IJMMS.2005.225
  15. Kolb, S., Pellegrini, J., 10.1016/j.jalgebra.2011.04.001, J. Algebra 336 (2011), 395-416. (2011) Zbl1266.17011MR2802552DOI10.1016/j.jalgebra.2011.04.001
  16. Letzter, G., 10.4153/CJM-1997-059-4, Can. J. Math. 49 (1997), 1206-1223. (1997) Zbl0898.17005MR1611652DOI10.4153/CJM-1997-059-4
  17. Letzter, G., 10.1006/jabr.1999.8015, J. Algebra 220 (1999), 729-767. (1999) Zbl0956.17007MR1717368DOI10.1006/jabr.1999.8015
  18. Letzter, G., Coideal subalgebras and quantum symmetric pairs, New Directions in Hopf Algebras Mathematical Sciences Research Institute Publications 43. Cambridge University Press, Cambridge (2002), 117-166. (2002) Zbl1025.17005MR1913438
  19. Letzter, G., 10.1007/s00031-003-0719-9, Transform. Groups 8 (2003), 261-292. (2003) Zbl1107.17010MR1996417DOI10.1007/s00031-003-0719-9
  20. Polishchuk, A., Positselski, L., 10.1090/ulect/037, University Lecture Series 37. AMS, Providence (2005). (2005) Zbl1145.16009MR2177131DOI10.1090/ulect/037
  21. Ştefan, D., Vay, C., 10.1016/j.aim.2016.01.001, Adv. Math. 291 (2016), 584-620. (2016) Zbl1366.18015MR3459024DOI10.1016/j.aim.2016.01.001
  22. Walton, C. M., On Degenerations and Deformations of Sklyanin Algebras: Ph.D. Thesis, University of Michigan, Ann Arbor (2011). (2011) MR2942216
  23. Xu, Y., Huang, H.-L., Wang, D., 10.1016/j.jpaa.2018.06.017, J. Pure Appl. Algebra 223 (2019), 1531-1547. (2019) Zbl1439.17019MR3906516DOI10.1016/j.jpaa.2018.06.017
  24. Xu, Y., Wang, D., Chen, J., 10.1142/S0219498816501796, J. Algebra. Appl. 15 (2016), Article ID 1650179, 13 pages. (2016) Zbl1366.17016MR3575969DOI10.1142/S0219498816501796
  25. Xu, Y., Yang, S., 10.1016/j.jalgebra.2013.08.011, J. Algebra 408 (2014), 222-249. (2014) Zbl1366.17017MR3197182DOI10.1016/j.jalgebra.2013.08.011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.