Möbius metric in sector domains

Oona Rainio; Matti Vuorinen

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 213-236
  • ISSN: 0011-4642

Abstract

top
The Möbius metric δ G is studied in the cases, where its domain G is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains.

How to cite

top

Rainio, Oona, and Vuorinen, Matti. "Möbius metric in sector domains." Czechoslovak Mathematical Journal 73.1 (2023): 213-236. <http://eudml.org/doc/299508>.

@article{Rainio2023,
abstract = {The Möbius metric $\delta _G$ is studied in the cases, where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains.},
author = {Rainio, Oona, Vuorinen, Matti},
journal = {Czechoslovak Mathematical Journal},
keywords = {hyperbolic geometry; hyperbolic metric; intrinsic geometry; Möbius metric; quasiregular mapping; triangular ratio metric},
language = {eng},
number = {1},
pages = {213-236},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Möbius metric in sector domains},
url = {http://eudml.org/doc/299508},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Rainio, Oona
AU - Vuorinen, Matti
TI - Möbius metric in sector domains
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 213
EP - 236
AB - The Möbius metric $\delta _G$ is studied in the cases, where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains.
LA - eng
KW - hyperbolic geometry; hyperbolic metric; intrinsic geometry; Möbius metric; quasiregular mapping; triangular ratio metric
UR - http://eudml.org/doc/299508
ER -

References

top
  1. Chen, J., Hariri, P., Klén, R., Vuorinen, M., 10.5186/aasfm.2015.4039, Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709. (2015) Zbl1374.30069MR3409699DOI10.5186/aasfm.2015.4039
  2. Gehring, F. W., Hag, K., 10.1090/surv/184, Mathematical Surveys and Monographs 184. AMS, Providence (2012). (2012) Zbl1267.30003MR2933660DOI10.1090/surv/184
  3. Gehring, F. W., Osgood, B. G., 10.1007/BF02798768, J. Anal. Math. 36 (1979), 50-74. (1979) Zbl0449.30012MR0581801DOI10.1007/BF02798768
  4. Gehring, F. W., Palka, B. P., 10.1007/BF02786713, J. Anal. Math. 30 (1976), 172-199. (1976) Zbl0349.30019MR0437753DOI10.1007/BF02786713
  5. Hariri, P., Klén, R., Vuorinen, M., 10.1007/s00605-017-1142-y, Monatsh. Math. 186 (2018), 281-298. (2018) Zbl1395.51019MR3808654DOI10.1007/s00605-017-1142-y
  6. Hariri, P., Klén, R., Vuorinen, M., 10.1007/978-3-030-32068-3, Springer Monographs in Mathematics. Springer, Cham (2020). (2020) Zbl1450.30003MR4179585DOI10.1007/978-3-030-32068-3
  7. Hariri, P., Vuorinen, M., Zhang, X., 10.1216/RMJ-2017-47-4-1121, Rocky Mt. J. Math. 47 (2017), 1121-1148. (2017) Zbl1376.30019MR3689948DOI10.1216/RMJ-2017-47-4-1121
  8. Hästö, P., 10.1016/S0022-247X(02)00219-6, J. Math. Anal. Appl. 274 (2002), 38-58. (2002) Zbl1019.54011MR1936685DOI10.1016/S0022-247X(02)00219-6
  9. Hästö, P., Ibragimov, Z., Minda, D., Ponnusamy, S., Swadesh, S., 10.1090/conm/432, In the Tradition of Ahlfors-Bers. IV Contemporary Mathematics 432. AMS, Providence (2007), 63-74. (2007) Zbl1147.30029MR2342807DOI10.1090/conm/432
  10. Lindén, H., Quasihyperbolic geodesics and uniformity in elementary domains, Ann. Acad. Sci. Fenn. Math. Diss. 146 (2005), 50 pages. (2005) Zbl1092.51003MR2183008
  11. Nasser, M. M. S., Rainio, O., Vuorinen, M., 10.1016/j.camwa.2021.11.016, Comput. Math. Appl. 105 (2022), 54-74. (2022) Zbl07447596MR4345260DOI10.1016/j.camwa.2021.11.016
  12. Rainio, O., 10.1007/s40840-021-01089-9, Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 2873-2891. (2021) Zbl1476.51019MR4296316DOI10.1007/s40840-021-01089-9
  13. Rainio, O., Vuorinen, M., 10.1007/s00025-021-01592-2, Result. Math. 77 (2022), Article ID 71, 18 pages. (2022) Zbl07490182MR4379104DOI10.1007/s00025-021-01592-2
  14. Rainio, O., Vuorinen, M., 10.1007/s40315-022-00447-3, To appear in Comput. Methods Funct. Theory (2022). (2022) MR4584499DOI10.1007/s40315-022-00447-3
  15. Seittenranta, P., 10.1017/S0305004198002904, Math. Proc. Camb. Philos. Soc. 125 (1999), 511-533. (1999) Zbl0917.30015MR1656825DOI10.1017/S0305004198002904
  16. Väisälä, J., 10.1007/BFb0061216, Lecture Notes in Mathematics 229. Springer, Berlin (1971). (1971) Zbl0221.30031MR0454009DOI10.1007/BFb0061216
  17. Vuorinen, M., 10.1007/BFb0077904, Lecture Notes in Mathematics 1319. Springer, Berlin (1988). (1988) Zbl0646.30025MR0950174DOI10.1007/BFb0077904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.