On -submodules and -submodules
Somayeh Karimzadeh; Javad Moghaderi
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 245-262
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKarimzadeh, Somayeh, and Moghaderi, Javad. "On $n$-submodules and $G.n$-submodules." Czechoslovak Mathematical Journal 73.1 (2023): 245-262. <http://eudml.org/doc/299510>.
@article{Karimzadeh2023,
abstract = {We investigate some properties of $n$-submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an $n$-submodule. Also, we show that if $M$ is a finitely generated $R$-module and $ \sqrt\{\{\{\rm Ann\} \}_R(M)\}$ is a prime ideal of $R$, then $M$ has $n$-submodule. Moreover, we define the notion of $G.n$-submodule, which is a generalization of the notion of $n$-submodule. We find some characterizations of $G.n$-submodules and we examine the way the aforementioned notions are related to each other.},
author = {Karimzadeh, Somayeh, Moghaderi, Javad},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-ideal; $n$-submodule; primary submodule},
language = {eng},
number = {1},
pages = {245-262},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $n$-submodules and $G.n$-submodules},
url = {http://eudml.org/doc/299510},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Karimzadeh, Somayeh
AU - Moghaderi, Javad
TI - On $n$-submodules and $G.n$-submodules
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 245
EP - 262
AB - We investigate some properties of $n$-submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an $n$-submodule. Also, we show that if $M$ is a finitely generated $R$-module and $ \sqrt{{{\rm Ann} }_R(M)}$ is a prime ideal of $R$, then $M$ has $n$-submodule. Moreover, we define the notion of $G.n$-submodule, which is a generalization of the notion of $n$-submodule. We find some characterizations of $G.n$-submodules and we examine the way the aforementioned notions are related to each other.
LA - eng
KW - $n$-ideal; $n$-submodule; primary submodule
UR - http://eudml.org/doc/299510
ER -
References
top- Ahmadi, M., Moghaderi, J., 10.52547/ijmsi.17.1.177, Iran. J. Math. Sci. Inform. 17 (2022), 177-190. (2022) Zbl7541073MR4411831DOI10.52547/ijmsi.17.1.177
- Ansari-Toroghy, H., Farshadifar, F., 10.11650/twjm/1500404812, Taiwanese J. Math. 11 (2007), 1189-1201. (2007) Zbl1137.16302MR2348561DOI10.11650/twjm/1500404812
- Atiyah, M. F., Macdonald, I. G., An Introduction to Commutative Algebra, Addision-Wesley, Reading (1969). (1969) Zbl0175.03601MR0242802
- Barnard, A., 10.1016/0021-8693(81)90112-5, J. Algebra 71 (1981), 174-178. (1981) Zbl0468.13011MR0627431DOI10.1016/0021-8693(81)90112-5
- El-Bast, Z. A., Smith, P. F., 10.1080/00927878808823601, Commun. Algebra 16 (1988), 755-779. (1988) Zbl0642.13002MR0932633DOI10.1080/00927878808823601
- Abdullah, N. Khalid, Irreducible submoduls and strongly irreducible submodules, Tikrit J. Pure Sci. 17 (2012), 219-224. (2012)
- Koç, S., Tekir, Ü., 10.3906/mat-1702-20, Turk. J. Math. 42 (2018), 1863-1876. (2018) Zbl1424.13019MR3843951DOI10.3906/mat-1702-20
- Lu, C., Prime submodules of modules, Comment. Math. Univ. St. Pauli 33 (1984), 61-69. (1984) Zbl0575.13005MR0741378
- Macdonald, I. G., Secondary representation of modules over a commutative ring, Convegno di Algebra Commutativa Symposia Mathematica 11. Academic Press, London (1973), 23-43. (1973) Zbl0271.13001MR0342506
- McCasland, R. L., Moore, M. E., 10.1080/00927879208824432, Commun. Algebra 20 (1992), 1803-1817. (1992) Zbl0776.13007MR1162609DOI10.1080/00927879208824432
- McCasland, R. L., Moore, M. E., Smith, P. F., 10.1080/00927879708825840, Commun. Algebra 25 (1997), 79-103. (1997) Zbl0876.13002MR1429749DOI10.1080/00927879708825840
- Mohamadian, R., 10.3906/mat-1503-35, Turk. J. Math. 39 (2015), 733-749. (2015) Zbl1348.13003MR3395802DOI10.3906/mat-1503-35
- Moore, M. E., Smith, S. J., 10.1081/agb-120014684, Commun. Algebra 30 (2002), 5037-5064. (2002) Zbl1049.13001MR1976290DOI10.1081/agb-120014684
- Tekir, U., Koc, S., Oral, K. H., 10.2298/FIL1710933T, Filomat 31 (2017), 2933-2941. (2017) Zbl07418085MR3639382DOI10.2298/FIL1710933T
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.