-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
Ruyun Ma; Zhiqian He; Xiaoxiao Su
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 321-333
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMa, Ruyun, He, Zhiqian, and Su, Xiaoxiao. "$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator." Czechoslovak Mathematical Journal 73.2 (2023): 321-333. <http://eudml.org/doc/299511>.
@article{Ma2023,
abstract = {Let $E=\lbrace u\in C^1[0,1] \colon u(0)=u(1)=0\rbrace $. Let $S_k^\nu $ with $\nu =\lbrace +, -\rbrace $ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem \[ \{\left\lbrace \begin\{array\}\{ll\} \biggl (\dfrac\{u^\{\prime \}\}\{\sqrt\{1-u^\{\prime 2\}\}\}\bigg )^\{\prime \}+\lambda a(x) f(u)=0, & x\in (0,1), \\ u(0)=u(1)=0, & \end\{array\}\right.\} \]
where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique.},
author = {Ma, Ruyun, He, Zhiqian, Su, Xiaoxiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {mean curvature operator; $S_k^\nu $-solution; bifurcation; Sturm-type comparison theorem},
language = {eng},
number = {2},
pages = {321-333},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator},
url = {http://eudml.org/doc/299511},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Ma, Ruyun
AU - He, Zhiqian
AU - Su, Xiaoxiao
TI - $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 321
EP - 333
AB - Let $E=\lbrace u\in C^1[0,1] \colon u(0)=u(1)=0\rbrace $. Let $S_k^\nu $ with $\nu =\lbrace +, -\rbrace $ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem \[ {\left\lbrace \begin{array}{ll} \biggl (\dfrac{u^{\prime }}{\sqrt{1-u^{\prime 2}}}\bigg )^{\prime }+\lambda a(x) f(u)=0, & x\in (0,1), \\ u(0)=u(1)=0, & \end{array}\right.} \]
where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique.
LA - eng
KW - mean curvature operator; $S_k^\nu $-solution; bifurcation; Sturm-type comparison theorem
UR - http://eudml.org/doc/299511
ER -
References
top- Bartnik, R., Simon, L., 10.1007/BF01211061, Commun. Math. Phys. 87 (1982), 131-152. (1982) Zbl0512.53055MR0680653DOI10.1007/BF01211061
- Bereanu, C., Jebelean, P., Torres, P. J., 10.1016/j.jfa.2013.04.006, J. Funct. Anal. 265 (2013), 644-659. (2013) Zbl1285.35051MR3062540DOI10.1016/j.jfa.2013.04.006
- Bereanu, C., Jebelean, P., Torres, P. J., 10.1016/j.jfa.2012.10.010, J. Funct. Anal. 264 (2013), 270-287. (2013) Zbl1336.35174MR2995707DOI10.1016/j.jfa.2012.10.010
- Boscaggin, A., Garrione, M., 10.1142/S0219199718500062, Commun. Contemp. Math. 21 (2019), Artile ID 1850006, 18 pages. (2019) Zbl1416.35096MR3918043DOI10.1142/S0219199718500062
- Cheng, S.-Y., Yau, S.-T., 10.2307/1970963, Ann. Math. (2) 104 (1976), 407-419. (1976) Zbl0352.53021MR0431061DOI10.2307/1970963
- Coelho, I., Corsato, C., Obersnel, F., Omari, P., 10.1515/ans-2012-0310, Adv. Nonlinear Stud. 12 (2012), 621-638. (2012) Zbl1263.34028MR2976056DOI10.1515/ans-2012-0310
- Corsato, C., Obersnel, F., Omari, P., Rivetti, S., 10.1016/j.jmaa.2013.04.003, J. Math. Anal. Appl. 405 (2013), 227-239. (2013) Zbl1310.35140MR3053503DOI10.1016/j.jmaa.2013.04.003
- Dai, G., 10.1088/1361-6544/aadf43, Nonlinearity 31 (2018), 5309-5328. (2018) MR3867236DOI10.1088/1361-6544/aadf43
- Dai, G., Wang, J., 10.57262/die/1489802422, Differ. Integral Equ. 30 (2017), 463-480. (2017) Zbl1424.35187MR3626584DOI10.57262/die/1489802422
- Dancer, E. N., 10.1512/iumj.1974.23.23087, Indiana Univ. Math. J. 23 (1974), 1069-1076. (1974) Zbl0276.47051MR0348567DOI10.1512/iumj.1974.23.23087
- Feynman, R. P., Leighton, R. B., Sands, M., The Feynman Lectures on Physics. II.: Mainly Electromagnetism and Matter, Addison-Wesley, Reading (1964). (1964) Zbl0131.38703MR0213078
- Huang, S.-Y., 10.1016/j.jde.2018.01.021, J. Differ. Equations 264 (2018), 5977-6011. (2018) Zbl1390.34051MR3765772DOI10.1016/j.jde.2018.01.021
- Hutten, E. H., 10.1038/205892a0, Nature, London 205 (1965), 892. (1965) Zbl0125.19603DOI10.1038/205892a0
- Jaroš, J., Kusano, T., A Picone type identity for second-order half-linear differential equations, Acta Math. Univ. Comen., New Ser. 68 (1999), 137-151. (1999) Zbl0926.34023MR1711081
- Li, H. J., Yeh, C. C., 10.1017/s0308210500030468, Proc. R. Soc. Edinb., Sect. A 125 (1995), 1193-1204. (1995) Zbl0873.34020MR1362999DOI10.1017/s0308210500030468
- Liang, Y.-H., Wang, S.-H., 10.1016/j.jde.2016.02.021, J. Differ. Equations 260 (2016), 8358-8387. (2016) Zbl1336.34029MR3482686DOI10.1016/j.jde.2016.02.021
- Ma, R., Gao, H., Lu, Y., 10.1016/j.jfa.2016.01.020, J. Funct. Anal. 270 (2016), 2430-2455. (2016) Zbl1342.34044MR3464046DOI10.1016/j.jfa.2016.01.020
- Ma, R., Xu, M., 10.4134/BKMS.b180011, Bull. Korean Math. Soc. 55 (2018), 1891-1908. (2018) Zbl1414.34020MR3890911DOI10.4134/BKMS.b180011
- MacColl, L. A., 10.1119/1.1934543, Am. J. Phys. 25 (1957), 535-538. (1957) Zbl0078.18904MR0089059DOI10.1119/1.1934543
- Shibata, T., 10.1016/j.na.2013.10.015, Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 796-808. (2014) Zbl1296.34100MR3130562DOI10.1016/j.na.2013.10.015
- Sim, I., Tanaka, S., 10.1016/j.aml.2015.04.007, Appl. Math. Lett. 49 (2015), 42-50. (2015) Zbl1342.35122MR3361694DOI10.1016/j.aml.2015.04.007
- Walter, W., 10.1007/978-1-4612-0601-9, Graduate Texts in Mathematics 182. Springer, New York (1998). (1998) Zbl0991.34001MR1629775DOI10.1007/978-1-4612-0601-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.