S -shaped component of nodal solutions for problem involving one-dimension mean curvature operator

Ruyun Ma; Zhiqian He; Xiaoxiao Su

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 321-333
  • ISSN: 0011-4642

Abstract

top
Let E = { u C 1 [ 0 , 1 ] : u ( 0 ) = u ( 1 ) = 0 } . Let S k ν with ν = { + , - } denote the set of functions u E which have exactly k - 1 interior nodal zeros in (0, 1) and ν u be positive near 0 . We show the existence of S -shaped connected component of S k ν -solutions of the problem u ' 1 - u ' 2 ' + λ a ( x ) f ( u ) = 0 , x ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = 0 , where λ > 0 is a parameter, a C ( [ 0 , 1 ] , ( 0 , ) ) . We determine the intervals of parameter λ in which the above problem has one, two or three S k ν -solutions. The proofs of the main results are based upon the bifurcation technique.

How to cite

top

Ma, Ruyun, He, Zhiqian, and Su, Xiaoxiao. "$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator." Czechoslovak Mathematical Journal 73.2 (2023): 321-333. <http://eudml.org/doc/299511>.

@article{Ma2023,
abstract = {Let $E=\lbrace u\in C^1[0,1] \colon u(0)=u(1)=0\rbrace $. Let $S_k^\nu $ with $\nu =\lbrace +, -\rbrace $ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem \[ \{\left\lbrace \begin\{array\}\{ll\} \biggl (\dfrac\{u^\{\prime \}\}\{\sqrt\{1-u^\{\prime 2\}\}\}\bigg )^\{\prime \}+\lambda a(x) f(u)=0, & x\in (0,1), \\ u(0)=u(1)=0, & \end\{array\}\right.\} \] where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique.},
author = {Ma, Ruyun, He, Zhiqian, Su, Xiaoxiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {mean curvature operator; $S_k^\nu $-solution; bifurcation; Sturm-type comparison theorem},
language = {eng},
number = {2},
pages = {321-333},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator},
url = {http://eudml.org/doc/299511},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Ma, Ruyun
AU - He, Zhiqian
AU - Su, Xiaoxiao
TI - $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 321
EP - 333
AB - Let $E=\lbrace u\in C^1[0,1] \colon u(0)=u(1)=0\rbrace $. Let $S_k^\nu $ with $\nu =\lbrace +, -\rbrace $ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem \[ {\left\lbrace \begin{array}{ll} \biggl (\dfrac{u^{\prime }}{\sqrt{1-u^{\prime 2}}}\bigg )^{\prime }+\lambda a(x) f(u)=0, & x\in (0,1), \\ u(0)=u(1)=0, & \end{array}\right.} \] where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique.
LA - eng
KW - mean curvature operator; $S_k^\nu $-solution; bifurcation; Sturm-type comparison theorem
UR - http://eudml.org/doc/299511
ER -

References

top
  1. Bartnik, R., Simon, L., 10.1007/BF01211061, Commun. Math. Phys. 87 (1982), 131-152. (1982) Zbl0512.53055MR0680653DOI10.1007/BF01211061
  2. Bereanu, C., Jebelean, P., Torres, P. J., 10.1016/j.jfa.2013.04.006, J. Funct. Anal. 265 (2013), 644-659. (2013) Zbl1285.35051MR3062540DOI10.1016/j.jfa.2013.04.006
  3. Bereanu, C., Jebelean, P., Torres, P. J., 10.1016/j.jfa.2012.10.010, J. Funct. Anal. 264 (2013), 270-287. (2013) Zbl1336.35174MR2995707DOI10.1016/j.jfa.2012.10.010
  4. Boscaggin, A., Garrione, M., 10.1142/S0219199718500062, Commun. Contemp. Math. 21 (2019), Artile ID 1850006, 18 pages. (2019) Zbl1416.35096MR3918043DOI10.1142/S0219199718500062
  5. Cheng, S.-Y., Yau, S.-T., 10.2307/1970963, Ann. Math. (2) 104 (1976), 407-419. (1976) Zbl0352.53021MR0431061DOI10.2307/1970963
  6. Coelho, I., Corsato, C., Obersnel, F., Omari, P., 10.1515/ans-2012-0310, Adv. Nonlinear Stud. 12 (2012), 621-638. (2012) Zbl1263.34028MR2976056DOI10.1515/ans-2012-0310
  7. Corsato, C., Obersnel, F., Omari, P., Rivetti, S., 10.1016/j.jmaa.2013.04.003, J. Math. Anal. Appl. 405 (2013), 227-239. (2013) Zbl1310.35140MR3053503DOI10.1016/j.jmaa.2013.04.003
  8. Dai, G., 10.1088/1361-6544/aadf43, Nonlinearity 31 (2018), 5309-5328. (2018) MR3867236DOI10.1088/1361-6544/aadf43
  9. Dai, G., Wang, J., 10.57262/die/1489802422, Differ. Integral Equ. 30 (2017), 463-480. (2017) Zbl1424.35187MR3626584DOI10.57262/die/1489802422
  10. Dancer, E. N., 10.1512/iumj.1974.23.23087, Indiana Univ. Math. J. 23 (1974), 1069-1076. (1974) Zbl0276.47051MR0348567DOI10.1512/iumj.1974.23.23087
  11. Feynman, R. P., Leighton, R. B., Sands, M., The Feynman Lectures on Physics. II.: Mainly Electromagnetism and Matter, Addison-Wesley, Reading (1964). (1964) Zbl0131.38703MR0213078
  12. Huang, S.-Y., 10.1016/j.jde.2018.01.021, J. Differ. Equations 264 (2018), 5977-6011. (2018) Zbl1390.34051MR3765772DOI10.1016/j.jde.2018.01.021
  13. Hutten, E. H., 10.1038/205892a0, Nature, London 205 (1965), 892. (1965) Zbl0125.19603DOI10.1038/205892a0
  14. Jaroš, J., Kusano, T., A Picone type identity for second-order half-linear differential equations, Acta Math. Univ. Comen., New Ser. 68 (1999), 137-151. (1999) Zbl0926.34023MR1711081
  15. Li, H. J., Yeh, C. C., 10.1017/s0308210500030468, Proc. R. Soc. Edinb., Sect. A 125 (1995), 1193-1204. (1995) Zbl0873.34020MR1362999DOI10.1017/s0308210500030468
  16. Liang, Y.-H., Wang, S.-H., 10.1016/j.jde.2016.02.021, J. Differ. Equations 260 (2016), 8358-8387. (2016) Zbl1336.34029MR3482686DOI10.1016/j.jde.2016.02.021
  17. Ma, R., Gao, H., Lu, Y., 10.1016/j.jfa.2016.01.020, J. Funct. Anal. 270 (2016), 2430-2455. (2016) Zbl1342.34044MR3464046DOI10.1016/j.jfa.2016.01.020
  18. Ma, R., Xu, M., 10.4134/BKMS.b180011, Bull. Korean Math. Soc. 55 (2018), 1891-1908. (2018) Zbl1414.34020MR3890911DOI10.4134/BKMS.b180011
  19. MacColl, L. A., 10.1119/1.1934543, Am. J. Phys. 25 (1957), 535-538. (1957) Zbl0078.18904MR0089059DOI10.1119/1.1934543
  20. Shibata, T., 10.1016/j.na.2013.10.015, Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 796-808. (2014) Zbl1296.34100MR3130562DOI10.1016/j.na.2013.10.015
  21. Sim, I., Tanaka, S., 10.1016/j.aml.2015.04.007, Appl. Math. Lett. 49 (2015), 42-50. (2015) Zbl1342.35122MR3361694DOI10.1016/j.aml.2015.04.007
  22. Walter, W., 10.1007/978-1-4612-0601-9, Graduate Texts in Mathematics 182. Springer, New York (1998). (1998) Zbl0991.34001MR1629775DOI10.1007/978-1-4612-0601-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.