An efficient hp spectral collocation method for nonsmooth optimal control problems
Mehrnoosh Hedayati; Hojjat Ahsani Tehrani; Alireza Fakharzadeh Jahromi; Mohammad Hadi Noori Skandari; Dumitru Baleanu
Kybernetika (2022)
- Volume: 58, Issue: 6, page 843-862
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHedayati, Mehrnoosh, et al. "An efficient hp spectral collocation method for nonsmooth optimal control problems." Kybernetika 58.6 (2022): 843-862. <http://eudml.org/doc/299519>.
@article{Hedayati2022,
abstract = {One of the most challenging problems in the optimal control theory consists of solving the nonsmooth optimal control problems where several discontinuities may be present in the control variable and derivative of the state variable. Recently some extended spectral collocation methods have been introduced for solving such problems, and a matrix of differentiation is usually used to discretize and to approximate the derivative of the state variable in the particular collocation points. In such methods, there is typically no condition for the continuity of the state variable at the switching points. In this article, we propose an efficient hp spectral collocation method for the general form of nonsmooth optimal control problems based on the operational integration matrix. The time interval of the problem is first partitioned into several variable subintervals, and the problem is then discretized by considering the Legendre-Gauss-Lobatto collocation points. Here, the switching points are unknown parameters, and having solved the final discretized problem, we achieve some approximations for the optimal solutions and the switching points. We solve some comparative numerical test problems to support of the performance of the suggested approach.},
author = {Hedayati, Mehrnoosh, Ahsani Tehrani, Hojjat, Fakharzadeh Jahromi, Alireza, Noori Skandari, Mohammad Hadi, Baleanu, Dumitru},
journal = {Kybernetika},
keywords = {nonsmooth optimal control; hp-method; Lagrange interpolating polynomials; Legendre-Gauss-Lobatto points},
language = {eng},
number = {6},
pages = {843-862},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An efficient hp spectral collocation method for nonsmooth optimal control problems},
url = {http://eudml.org/doc/299519},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Hedayati, Mehrnoosh
AU - Ahsani Tehrani, Hojjat
AU - Fakharzadeh Jahromi, Alireza
AU - Noori Skandari, Mohammad Hadi
AU - Baleanu, Dumitru
TI - An efficient hp spectral collocation method for nonsmooth optimal control problems
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 6
SP - 843
EP - 862
AB - One of the most challenging problems in the optimal control theory consists of solving the nonsmooth optimal control problems where several discontinuities may be present in the control variable and derivative of the state variable. Recently some extended spectral collocation methods have been introduced for solving such problems, and a matrix of differentiation is usually used to discretize and to approximate the derivative of the state variable in the particular collocation points. In such methods, there is typically no condition for the continuity of the state variable at the switching points. In this article, we propose an efficient hp spectral collocation method for the general form of nonsmooth optimal control problems based on the operational integration matrix. The time interval of the problem is first partitioned into several variable subintervals, and the problem is then discretized by considering the Legendre-Gauss-Lobatto collocation points. Here, the switching points are unknown parameters, and having solved the final discretized problem, we achieve some approximations for the optimal solutions and the switching points. We solve some comparative numerical test problems to support of the performance of the suggested approach.
LA - eng
KW - nonsmooth optimal control; hp-method; Lagrange interpolating polynomials; Legendre-Gauss-Lobatto points
UR - http://eudml.org/doc/299519
ER -
References
top- Agamawi, Y., Hager, W., Rao, A. V., Mesh refinement method for optimal control problems with discontinuous control profiles., In: AIAA Guidance, Navigation, and Control Conference 2017, pp. 1506.
- Aly, G. M., Chan, W. C., , Int. J. Control 17 (1973), 809-815. DOI
- Aronna, M. S., Bonnans, J. F., Martinon, P., , J. Optim. Theory Appl. 158 (2013), 419-459. MR3084385DOI
- Betts, J. T., Practical methods for optimal control using nonlinear programming, ser., In: Advances in Design and Control, SIAM Press, Philadelphia 2001, 3. MR1826768
- Betts, J. T., Huffman, W. P., 10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q, J. Optimal Control Appl. Methods 19 (1998), 1-21. MR1623173DOI10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q
- Berkmann, P., Pesch, H. J., , J. Optim. Theory Appl.85 (1995), 21-57. MR1330841DOI
- Canuto, C., Hussaini, M., Quarteroni, A., Zang, T. A., Spectral Methods in Fluid Dynamics., Springer Series Comput. Physics, Springer, Berlin 1991. MR2340254
- Cuthreli, J. E., Biegler, L. T., , J. Amer. Inst. Chemical Engineers 33 (1987), 1257-1270. MR0909947DOI
- Cuthrell, J. E., Biegler, L. T., , J. Computers Chemical Engrg. 13 (1989), 49-62. DOI
- Dadebo, S. A., McAuley, K. B., On the computation of optimal singular controls., In: Proc. International Conference on Control Applications. IEEE (1995), pp. 150-155.
- Dadebo, S. A., McAuley, K. B., McLellan, P. J., , J. Optim. Control Appl. Methods 19 (1998), 287-297. MR1650209DOI
- Darby, C. L., Hager, W., Rao, A. V., , J. Optimal Control Appl. Methods 32 (2011), 476-502. MR2850736DOI
- Dolan, E., More, J. J., Munson, T. S., Benchmarking optimization software with COPS 3.0, ANL/ MCS-273., ANL/MCS-TM-273. Argonne National Lab., Argonne, IL (US), 2004.
- Foroozandeh, Z., Shamsi, M., Azhmyakov, V., Shafiee, M., , Math. Methods Appl. Sci. 40 (2016), 1783-1793. MR3622433DOI
- Fu, W., Lu, Q., , Complexity (2020), 1-15. DOI
- Gao, W., Jiang, Y., Jiang, Z. P., Chai, T., , J. Automatica 72 (2016), 37-45. MR3542912DOI
- Goddard, R. H., , Nature 105 (1920), 809-811. DOI
- Graichen, K., Petit, N., , IFAC Proceed. 41 (2008), 14301-14306. DOI
- Hager, W., Liu, J., Mohapatra, S., Rao, V., Wang, X-SH., , SIAM J. Control Optim. 56 (2017), 1386-1411. MR3784105DOI
- Henriques, J. C. C., Lemos, J. M., Gato, L. M C., Falcao, A. F. O., , J. Automatica 85 (2017), 70-82. MR3712847DOI
- Hu, G. S., Ong, C. J., Teo, C. L., , J. Optim. Theory Appl. 120 (2004), 395-416. MR2044903DOI
- Huang, H. P., McClamroch, N. H., 10.1109/56.2077, IEEE J, Robotics Automat. 4 (1998), 140-149. DOI10.1109/56.2077
- Jain, D., Tsiotras, P., , J. Guidance Control Dynamics 31 (2008), 1424-1436. DOI
- Kim, J. H. R., Maurer, H., Astrov, Y. A., Bode, M., Purwins, H. G., , J. Comput. Phys. 170 (2001), 395-414. DOI
- Ledzewicz, U., Schattler, H., , J. Optim. Theory Appl. 114 (2002), 609-637. MR1921169DOI
- Luus, R., , IEEE Trans. Automat. Control 37 (1992), 1802-1806. MR1195226DOI
- Martinon, P., Bonnans, F., Laurent-Varin, J., Trelat, E., , J. Guidance Control Dynamics 32 (2009), 51-55. DOI
- Marzban, H. R., Hoseini, S. M., , Commun. Nonlinear Sci. Numerical Simul- 18 (2012), 1347-1361. Zbl1282.65075MR3016889DOI
- Maurer, H., 10.1007/BF00935706, J. Optim. Theory Appl. 18 (1973), 235-259. MR0408246DOI10.1007/BF00935706
- Mehra, R. K., Davis, R. E., , IEEE Trans. Automat. Control 17 (1972), 69-79. MR0368899DOI
- Olsder, G. J., , SIAM J. Control Optim. 40 (2001), 1087-1106. MR1882726DOI
- Ross, I. M., Gong, Q., Kang, W., , Inst. Electrical and Electronic Engineers Transactions on Automatic Control 51 (2006), 1115-1129. MR2238794DOI
- Savku, E., Weber, G. W., , J. Optim. Theory Appl. 179 (2018), 696-721. MR3865345DOI
- Seywald, H., Cliff, E. M., , J. Guidance Control Dynamics 16 (1993), 776-781. DOI
- Shamsi, M., , J. Optim. Control Appl. Methods 32 (2011), 668-680. MR2871837DOI
- Shen, J., Tang, T., Wang, L., Spectral Methods Algorithms, Analysis and Applications., Springer Series in Computational Mathematics 2011. MR2867779
- Shirin, A., Klickstein, I. S., Feng, S., Lin, Y. T., Hlavacek, W. S., Sorrentino, F., Prediction of optimal drug schedules for controlling autophagy., Nature 9 (2019), 1-15.
- Signori, A., 10.3233/ASY-191546, Asymptotic Analysis 117 (2020), 4-66. MR4158326DOI10.3233/ASY-191546
- Skandari, M. H. N., Tohidi, E., 10.4236/am.2011.25085, Appl. Math. 2 (2011), 646-652. MR2910173DOI10.4236/am.2011.25085
- Speyer, J. L., , J. Guidance Control Dynamics 19 (1996), 745-755. DOI
- Sun, D. Y., , ISA Trans. 49 (2010), 106-113. DOI
- Tabrizidooz, H. R., Marzban, H. R., Pourbabaee, M., Hedayati, M., 10.1016/j.jfranklin.2017.01.002, J. Franklin Inst. 35 (2017), 2393-2414. MR3623593DOI10.1016/j.jfranklin.2017.01.002
- Trelat, E., , J. Optim. Theory Appl. 154 (2012), 713-758. MR2957013DOI
- Tsiotras, P., Kelley, H. J., , J. Guidance Control Dynamics 15 (1992), 289-296. DOI
- Williams, P., , In: Proc. Seventh Biennial Engineering Mathematics and Applications Conference 2005, The Anzim Journal 47 (2006), C101-C115. MR2242566DOI
- Zhang, X. Y., 10.1016/j.cam.2017.02.040, J. Computat. Appl. Math. 321 (2017), 284-301. MR3634936DOI10.1016/j.cam.2017.02.040
- Zhao, Y., Tsiotras, P., A density-function based mesh refinement algorithm for solving optimal control problems., In: Infotech and Aerospace Conference 2009, 2009-2019.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.