A tight bound of modified iterative hard thresholding algorithm for compressed sensing
Jinyao Ma; Haibin Zhang; Shanshan Yang; Jiaojiao Jiang
Applications of Mathematics (2023)
- Volume: 68, Issue: 5, page 623-642
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMa, Jinyao, et al. "A tight bound of modified iterative hard thresholding algorithm for compressed sensing." Applications of Mathematics 68.5 (2023): 623-642. <http://eudml.org/doc/299524>.
@article{Ma2023,
abstract = {We provide a theoretical study of the iterative hard thresholding with partially known support set (IHT-PKS) algorithm when used to solve the compressed sensing recovery problem. Recent work has shown that IHT-PKS performs better than the traditional IHT in reconstructing sparse or compressible signals. However, less work has been done on analyzing the performance guarantees of IHT-PKS. In this paper, we improve the current RIP-based bound of IHT-PKS algorithm from $\delta _\{3s-2k\}<\smash\{\frac\{1\}\{\sqrt\{32\}\}\}\approx 0.1768$ to $\delta _\{3s-2k\}<\frac\{\sqrt\{5\}-1\}\{4\}\approx 0.309$, where $\delta _\{3s-2k\}$ is the restricted isometric constant of the measurement matrix. We also present the conditions for stable reconstruction using the $\{\rm IHT\}^\{\mu \}$-PKS algorithm which is a general form of IHT-PKS. We further apply the algorithm on Least Squares Support Vector Machines (LS-SVM), which is one of the most popular tools for regression and classification learning but confronts the loss of sparsity problem. After the sparse representation of LS-SVM is presented by compressed sensing, we exploit the support of bias term in the LS-SVM model with the $\{\rm IHT\}^\{\mu \}$-PKS algorithm. Experimental results on classification problems show that $\{\rm IHT\}^\{\mu \}$-PKS outperforms other approaches to computing the sparse LS-SVM classifier.},
author = {Ma, Jinyao, Zhang, Haibin, Yang, Shanshan, Jiang, Jiaojiao},
journal = {Applications of Mathematics},
keywords = {iterative hard thresholding; signal reconstruction; classification problem; least squares support vector machine},
language = {eng},
number = {5},
pages = {623-642},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A tight bound of modified iterative hard thresholding algorithm for compressed sensing},
url = {http://eudml.org/doc/299524},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Ma, Jinyao
AU - Zhang, Haibin
AU - Yang, Shanshan
AU - Jiang, Jiaojiao
TI - A tight bound of modified iterative hard thresholding algorithm for compressed sensing
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 5
SP - 623
EP - 642
AB - We provide a theoretical study of the iterative hard thresholding with partially known support set (IHT-PKS) algorithm when used to solve the compressed sensing recovery problem. Recent work has shown that IHT-PKS performs better than the traditional IHT in reconstructing sparse or compressible signals. However, less work has been done on analyzing the performance guarantees of IHT-PKS. In this paper, we improve the current RIP-based bound of IHT-PKS algorithm from $\delta _{3s-2k}<\smash{\frac{1}{\sqrt{32}}}\approx 0.1768$ to $\delta _{3s-2k}<\frac{\sqrt{5}-1}{4}\approx 0.309$, where $\delta _{3s-2k}$ is the restricted isometric constant of the measurement matrix. We also present the conditions for stable reconstruction using the ${\rm IHT}^{\mu }$-PKS algorithm which is a general form of IHT-PKS. We further apply the algorithm on Least Squares Support Vector Machines (LS-SVM), which is one of the most popular tools for regression and classification learning but confronts the loss of sparsity problem. After the sparse representation of LS-SVM is presented by compressed sensing, we exploit the support of bias term in the LS-SVM model with the ${\rm IHT}^{\mu }$-PKS algorithm. Experimental results on classification problems show that ${\rm IHT}^{\mu }$-PKS outperforms other approaches to computing the sparse LS-SVM classifier.
LA - eng
KW - iterative hard thresholding; signal reconstruction; classification problem; least squares support vector machine
UR - http://eudml.org/doc/299524
ER -
References
top- Axiotis, K., Sviridenko, M., Sparse convex optimization via adaptively regularized hard thresholding, J. Mach. Learn. Res. 22 (2021), Article ID 122, 47 pages. (2021) Zbl07370639MR4279773
- Baraniuk, R. G., Cevher, V., Duarte, M. F., Hegde, C., 10.1109/TIT.2010.2040894, IEEE Trans. Inf. Theory 56 (2010), 1982-2001. (2010) Zbl1366.94215MR2654489DOI10.1109/TIT.2010.2040894
- Besson, A., Perdios, D., Wiaux, Y., Thiran, J.-P., 10.110/LSP.2018.2880571, IEEE Signal Process. Lett. 26 (2019), 84-88. (2019) DOI10.110/LSP.2018.2880571
- Blumensath, T., Davies, M. E., 10.1007/s00041-008-9035-z, J. Fourier Anal. Appl. 14 (2008), 629-654. (2008) Zbl1175.94060MR2461601DOI10.1007/s00041-008-9035-z
- Blumensath, T., Davies, M. E., 10.1016/j.acha.2009.04.002, Appl. Comput. Harmon. Anal. 27 (2009), 265-274. (2009) Zbl1174.94008MR2559726DOI10.1016/j.acha.2009.04.002
- Blumensath, T., Davies, M. E., 10.1109/JSTSP.2010.2042411, IEEE J. Selected Topics Signal Process. 4 (2010), 298-309. (2010) DOI10.1109/JSTSP.2010.2042411
- Candès, E. J., Tao, T., 10.1109/TIT.2005.858979, IEEE Trans. Inf. Theory 51 (2005), 4203-4215. (2005) Zbl1264.94121MR2243152DOI10.1109/TIT.2005.858979
- Carrillo, R. E., Polania, L. F., Barner, K. E., 10.1109/ICASSP.2010.5495901, IEEE International Conference on Acoustics, Speech and Signal Processing IEEE, Los Alamitos (2010), 3654-3657. (2010) DOI10.1109/ICASSP.2010.5495901
- Carrillo, R. E., Polania, L. F., Barner, K. E., 10.1109/ICASSP.2011.5947236, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE, Los Alamitos (2011), 4028-4031. (2011) DOI10.1109/ICASSP.2011.5947236
- Chen, S. S., Donoho, D. L., Saunders, M. A., 10.1137/S003614450037906X, SIAM Rev. 43 (2001), 129-159. (2001) Zbl0979.94010MR1854649DOI10.1137/S003614450037906X
- Cui, K., Song, Z., Han, N., 10.1142/S021759592050013X, Asia-Pac. J. Oper. Res. 37 (2020), Article ID 2050013, 20 pages. (2020) Zbl1457.94037MR4107957DOI10.1142/S021759592050013X
- Foucart, S., 10.1016/j.acha.2009.10.004, Appl. Comput. Harmon. Anal. 29 (2010), 97-103. (2010) Zbl1198.41011MR2647014DOI10.1016/j.acha.2009.10.004
- Foucart, S., 10.1137/100806278, SIAM J. Numer. Anal. 49 (2011), 2543-2563. (2011) Zbl1242.65060MR2873246DOI10.1137/100806278
- Foucart, S., Rauhut, H., 10.1007/978-0-8176-4948-7, Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). (2013) Zbl1315.94002MR3100033DOI10.1007/978-0-8176-4948-7
- Jacques, L., 10.1016/j.sigpro.2010.05.025, Signal Process. 90 (2010), 3308-3312. (2010) Zbl1197.94063DOI10.1016/j.sigpro.2010.05.025
- Khajehnejad, M. A., Xu, W., Avestimehr, A. S., Hassibi, B., 10.1109ISIT.2009.5205716, IEEE International Symposium on Information Theory IEEE, Los Alamitos (2009), 483-487. (2009) MR2816477DOI10.1109ISIT.2009.5205716
- Khera, S., Singh, S., 10.1088/1742-6596/2327/1/012040, J. Phys., Conf. Ser. 2327 (2022), Article ID 012040, 9 pages. (2022) DOI10.1088/1742-6596/2327/1/012040
- Li, Y., Lin, C., Zhang, W., 10.1016/j.neucom.2006.03.001, Neurocomputing 69 (2006), 1655-1658. (2006) DOI10.1016/j.neucom.2006.03.001
- Liu, H., Barber, R. Foygel, 10.1093/imaiai/iaz027, Inf. Inference 9 (2020), 899-933. (2020) Zbl1473.90162MR4188230DOI10.1093/imaiai/iaz027
- Mall, R., Suykens, J. A. K., 10.1109/TNNLS.2014.2333879, IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 1086-1097. (2015) MR3454265DOI10.1109/TNNLS.2014.2333879
- Shao, Y.-H., Li, C.-N., Liu, M.-Z., Wang, Z., Deng, N.-Y., 10.1016/j.patcog.2018.01.016, Pattern Recognition 78 (2018), 167-181. (2018) MR3621691DOI10.1016/j.patcog.2018.01.016
- Shen, J., Li, P., A tight bound of hard thresholding, J. Mach. Learn. Res. 18 (2018), Article ID 208, 42 pages. (2018) Zbl1473.62287MR3827096
- Suykens, J. A. K., Lukas, L., Vandewalle, J., 10.1109/ISCAS.2000.856439, IEEE International Symposium on Circuits and Systems (ISCAS). Vol. 2 IEEE, Los Alamitos (2000), 757-760. (2000) DOI10.1109/ISCAS.2000.856439
- Vaswani, N., Lu, W., 10.1109/TSP.2010.2051150, IEEE Trans. Signal Process. 58 (2010), 4595-4607. (2010) Zbl1392.94045MR2752724DOI10.1109/TSP.2010.2051150
- Borries, R. von, Miosso, C. J., Potes, C., 10.1109/CAMSAP.2007.4497980, International Workshop on Computational Advances in Multi-Sensor Adaptive Processing IEEE, Los Alamitos (2007), 121-124. (2007) DOI10.1109/CAMSAP.2007.4497980
- Wang, X.-Z., Xing, H.-J., Li, Y., Hua, Q., Dong, C.-R., Pedrycz, W., 10.1109/TFUZZ.2014.2371479, IEEE Trans. Fuzzy Syst. 23 (2015), 1638-1654. (2015) DOI10.1109/TFUZZ.2014.2371479
- Yang, J., Bouzerdoum, A., Phung, S. L., 10.1109/ICASSP.2010.5495015, IEEE International Conference on Acoustics, Speech and Signal Processing IEEE, Los Alamitos (2010), 2054-2057. (2010) MR0642901DOI10.1109/ICASSP.2010.5495015
- Yang, J., Ma, J., 10.1109/CIDM.2014.7008688, IEEE Symposium on Computational Intelligence and Data Mining (CIDM) IEEE, Los Alamitos (2014), 345-350. (2014) DOI10.1109/CIDM.2014.7008688
- Yu, M., Gupta, V., Kolar, M., 10.1214/19-EJS1658, Electron. J. Stat. 14 (2020), 413-457. (2020) Zbl1434.90161MR4054252DOI10.1214/19-EJS1658
- Zhang, X., Xu, W., Cui, Y., Lu, L., Lin, J., 10.1109/ACCESS.2019.2955759, IEEE Access 7 (2019), 175554-175563. (2019) DOI10.1109/ACCESS.2019.2955759
- Zhao, Y.-B., Luo, Z.-Q., Improved rip-based bounds for guaranteed performance of two compressed sensing algorithms, Available at https://arxiv.org/abs/2007.01451 (2020), 10 pages. (2020) MR4577493
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.