Existence of renormalized solutions for some degenerate and non-coercive elliptic equations
Youssef Akdim; Mohammed Belayachi; Hassane Hjiaj
Mathematica Bohemica (2023)
- Volume: 148, Issue: 2, page 255-282
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAkdim, Youssef, Belayachi, Mohammed, and Hjiaj, Hassane. "Existence of renormalized solutions for some degenerate and non-coercive elliptic equations." Mathematica Bohemica 148.2 (2023): 255-282. <http://eudml.org/doc/299526>.
@article{Akdim2023,
abstract = {This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by \[ \begin\{aligned\}t 2&-\{\rm div\}( b(|u|)|\nabla u|^\{p-2\}\nabla u) + d(|u|)|\nabla u|^\{p\} = f - \{\rm div\}(c(x)|u|^\{\alpha \}) &\quad &\mbox\{in\}\ \Omega ,\\ & u = 0 &\quad &\mbox\{on\}\ \partial \Omega , \end\{aligned\}t \]
where $\Omega $ is a bounded open set of $\mathbb \{R\}^N$ ($N\ge 2$) with $1<p<N$ and $f \in L^\{1\}(\Omega ),$ under some growth conditions on the function $b(\cdot )$ and $d(\cdot ),$ where $c(\cdot )$ is assumed to be in $L^\{\frac\{N\}\{(p-1)\}\}(\Omega ).$ We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.},
author = {Akdim, Youssef, Belayachi, Mohammed, Hjiaj, Hassane},
journal = {Mathematica Bohemica},
keywords = {renormalized solution; nonlinear elliptic equation; non-coercive problem},
language = {eng},
number = {2},
pages = {255-282},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of renormalized solutions for some degenerate and non-coercive elliptic equations},
url = {http://eudml.org/doc/299526},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Akdim, Youssef
AU - Belayachi, Mohammed
AU - Hjiaj, Hassane
TI - Existence of renormalized solutions for some degenerate and non-coercive elliptic equations
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 2
SP - 255
EP - 282
AB - This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by \[ \begin{aligned}t 2&-{\rm div}( b(|u|)|\nabla u|^{p-2}\nabla u) + d(|u|)|\nabla u|^{p} = f - {\rm div}(c(x)|u|^{\alpha }) &\quad &\mbox{in}\ \Omega ,\\ & u = 0 &\quad &\mbox{on}\ \partial \Omega , \end{aligned}t \]
where $\Omega $ is a bounded open set of $\mathbb {R}^N$ ($N\ge 2$) with $1<p<N$ and $f \in L^{1}(\Omega ),$ under some growth conditions on the function $b(\cdot )$ and $d(\cdot ),$ where $c(\cdot )$ is assumed to be in $L^{\frac{N}{(p-1)}}(\Omega ).$ We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.
LA - eng
KW - renormalized solution; nonlinear elliptic equation; non-coercive problem
UR - http://eudml.org/doc/299526
ER -
References
top- Alvino, A., Boccardo, L., Ferone, V., Orsina, L., Trombetti, G., 10.1007/s10231-002-0056-y, Ann. Mat. Pura Appl., IV. Ser. 182 (2003), 53-79. (2003) Zbl1105.35040MR1970464DOI10.1007/s10231-002-0056-y
- Alvino, A., Ferone, V., Trombetti, G., A priori estimates for a class of nonuniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381-391. (1998) Zbl0911.35025MR1645729
- Ali, M. Ben Cheikh, Guibé, O., Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl. 16 (2006), 275-297. (2006) Zbl1215.35066MR2253236
- Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L., An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. (1995) Zbl0866.35037MR1354907
- Bensoussan, A., Boccardo, L., Murat, F., 10.1016/S0294-1449(16)30342-0, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5 (1988), 347-364. (1988) Zbl0696.35042MR0963104DOI10.1016/S0294-1449(16)30342-0
- Blanchard, D., Guibé, O., 10.1142/S0219530504000369, Anal. Appl., Singap. 2 (2004), 227-246. (2004) Zbl1129.35370MR2070448DOI10.1142/S0219530504000369
- Boccardo, L., Dall'Aglio, A., Orsina, L., Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51-81. (1998) Zbl0911.35049MR1645710
- Boccardo, L., Gallouet, T., 10.1016/0362-546X(92)90022-7, Nonlinear Anal., Theory Methods Appl. 19 (1992), 573-579. (1992) Zbl0795.35031MR1183664DOI10.1016/0362-546X(92)90022-7
- Croce, G., The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity, Rend. Mat. Appl., VII. Ser. 27 (2007), 299-314. (2007) Zbl1147.35043MR2398428
- Vecchio, T. Del, Posteraro, M. R., Existence and regularity results for nonlinear elliptic equations with measure data, Adv. Differ. Equ. 1 (1996), 899-917. (1996) Zbl0856.35044MR1392010
- Pietra, F. Della, Existence results for non-uniformly elliptic equations with general growth in the gradient, Differ. Integral Equ. 21 (2008), 821-836. (2008) Zbl1224.35117MR2483336
- Droniou, J., 10.1023/A:1015709329011, Potential Anal. 17 (2002), 181-203. (2002) Zbl1161.35362MR1908676DOI10.1023/A:1015709329011
- Droniou, J., 10.1081/PDE-120019377, Commun. Partial Differ. Equations 28 (2003), 129-153. (2003) Zbl1094.35046MR1974452DOI10.1081/PDE-120019377
- Guibé, O., Mercaldo, A., 10.1007/s11118-006-9011-7, Potential Anal. 25 (2006), 223-258. (2006) Zbl1198.35072MR2255346DOI10.1007/s11118-006-9011-7
- Guibé, O., Mercaldo, A., 10.1090/S0002-9947-07-04139-6, Trans. Am. Math. Soc. 360 (2008), 643-669. (2008) Zbl1156.35042MR2346466DOI10.1090/S0002-9947-07-04139-6
- Leone, C., Porretta, A., 10.1016/S0362-546X(96)00323-9, Nonlinear Anal., Theory Methods Appl. 32 (1998), 325-334. (1998) Zbl1155.35352MR1610574DOI10.1016/S0362-546X(96)00323-9
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Maderna, C., Pagani, C. D., Salsa, S., 10.1016/0022-0396(92)90083-Y, J. Differ. Equations 97 (1992), 54-70. (1992) Zbl0785.35039MR1161311DOI10.1016/0022-0396(92)90083-Y
- Murat, F., Soluciones renormalizadas de EDP elipticas non lineales, Technical Report R93023, Laboratoire d'Analyse Numérique, Paris (1993), French. (1993)
- Porretta, A., Nonlinear equations with natural growth terms and measure data, Electron. J. Differ. Equ. Conf. 09 (2002), 183-202. (2002) Zbl1109.35341MR1976695
- León, S. Segura de, Existence and uniqueness for data of some elliptic equations with natural growth, Adv. Differ. Equ. 8 (2003), 1377-1408. (2003) Zbl1158.35365MR2016651
- Trombetti, C., 10.1023/A:1021884903872, Potential Anal. 18 (2003), 391-404. (2003) Zbl1040.35010MR1953268DOI10.1023/A:1021884903872
- Zou, W., 10.1186/s13660-015-0799-9, J. Inequal. Appl. 2015 (2015), Article ID 294, 23 pages. (2015) Zbl1336.35167MR3399257DOI10.1186/s13660-015-0799-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.