Bifurcation analysis of macroscopic traffic flow model based on the influence of road conditions
Wenhuan Ai; Ting Zhang; Dawei Liu
Applications of Mathematics (2023)
- Volume: 68, Issue: 4, page 499-534
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAi, Wenhuan, Zhang, Ting, and Liu, Dawei. "Bifurcation analysis of macroscopic traffic flow model based on the influence of road conditions." Applications of Mathematics 68.4 (2023): 499-534. <http://eudml.org/doc/299528>.
@article{Ai2023,
abstract = {A macroscopic traffic flow model considering the effects of curves, ramps, and adverse weather is proposed, and nonlinear bifurcation theory is used to describe and predict nonlinear traffic phenomena on highways from the perspective of global stability of the traffic system. Firstly, the stability conditions of the model shock wave were investigated using the linear stability analysis method. Then, the long-wave mode at the coarse-grained scale is considered, and the model is analyzed using the reduced perturbation method to obtain the Korteweg-de Vries (KdV) equation of the model in the sub-stable region. In addition, the type of equilibrium points and their stability are discussed by using bifurcation analysis, and a theoretical derivation proves the existence of Hopf bifurcation and saddle-knot bifurcation in the model. Finally, the simulation density spatio-temporal and phase plane diagrams verify that the model can describe traffic phenomena such as traffic congestion and stop-and-go traffic in real traffic, providing a theoretical basis for the prevention of traffic congestion.},
author = {Ai, Wenhuan, Zhang, Ting, Liu, Dawei},
journal = {Applications of Mathematics},
keywords = {macro traffic flow; curves; ramps; bifurcation analysis},
language = {eng},
number = {4},
pages = {499-534},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcation analysis of macroscopic traffic flow model based on the influence of road conditions},
url = {http://eudml.org/doc/299528},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Ai, Wenhuan
AU - Zhang, Ting
AU - Liu, Dawei
TI - Bifurcation analysis of macroscopic traffic flow model based on the influence of road conditions
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 499
EP - 534
AB - A macroscopic traffic flow model considering the effects of curves, ramps, and adverse weather is proposed, and nonlinear bifurcation theory is used to describe and predict nonlinear traffic phenomena on highways from the perspective of global stability of the traffic system. Firstly, the stability conditions of the model shock wave were investigated using the linear stability analysis method. Then, the long-wave mode at the coarse-grained scale is considered, and the model is analyzed using the reduced perturbation method to obtain the Korteweg-de Vries (KdV) equation of the model in the sub-stable region. In addition, the type of equilibrium points and their stability are discussed by using bifurcation analysis, and a theoretical derivation proves the existence of Hopf bifurcation and saddle-knot bifurcation in the model. Finally, the simulation density spatio-temporal and phase plane diagrams verify that the model can describe traffic phenomena such as traffic congestion and stop-and-go traffic in real traffic, providing a theoretical basis for the prevention of traffic congestion.
LA - eng
KW - macro traffic flow; curves; ramps; bifurcation analysis
UR - http://eudml.org/doc/299528
ER -
References
top- Ai, W.-H., Shi, Z.-K., Liu, D.-W., 10.1016/j.physa.2015.06.004, Physica A 437 (2015), 418-429. (2015) Zbl1400.90088MR3371710DOI10.1016/j.physa.2015.06.004
- Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y., 10.1103/PhysRevE.51.1035, Phys. Rev. E (3) 51 (1995), 1035-1042. (1995) DOI10.1103/PhysRevE.51.1035
- Cao, J. F., Han, C. Z., Fang, Y. W., Nonlinear Systems Theory and Application, Xi’an Jiao Tong University Press, Xi’an (2006), ISBN 7-5605-2140-1Chinese. (2006)
- Carrillo, F. A., Delgado, J., Saavedra, P., Velasco, R. M., Verduzco, F., 10.1142/S0218127413501915, Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), Article ID 1350191, 15 pages. (2013) Zbl1284.90012MR3158306DOI10.1142/S0218127413501915
- Chen, B., Sun, D., Zhou, J., Wong, W., Ding, Z., 10.1016/j.ins.2020.02.009, Inform. Sci. 529 (2020), 59-72. (2020) MR4093031DOI10.1016/j.ins.2020.02.009
- Cui, N., Chen, B., Zhang, K., Zhang, Y., Liu, X., Zhou, J., 10.1016/j.physa.2018.08.009, Physica A 513 (2019), 32-44. (2019) DOI10.1016/j.physa.2018.08.009
- Daganzo, C. F., Laval, J. A., 10.1016/j.trb.2004.10.004, Transp. Res., Part B 39 (2005), 855-863. (2005) DOI10.1016/j.trb.2004.10.004
- Delgado, J., Saavedra, P., 10.1142/S0218127415500649, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550064, 18 pages. (2015) Zbl1317.34074MR3349898DOI10.1142/S0218127415500649
- Gupta, A. K., Dhiman, I., 10.1007/s11071-014-1693-6, Nonlinear Dyn. 79 (2015), 663-671. (2015) MR3302725DOI10.1007/s11071-014-1693-6
- Gupta, A. K., Katiyar, V. K., 10.1088/0305-4470/38/19/002, J. Phys. A, Math. Gen. 38 (2005), 4069-4083. (2005) Zbl1086.90013MR2145802DOI10.1088/0305-4470/38/19/002
- Gupta, A. K., Katiyar, V. K., 10.1016/j.physa.2005.12.036, Physica A 368 (2006), 551-559. (2006) DOI10.1016/j.physa.2005.12.036
- Gupta, A. K., Katiyar, V. K., 10.1016/j.physa.2006.03.061, Physica A 371 (2006), 674-682. (2006) DOI10.1016/j.physa.2006.03.061
- Gupta, A. K., Redhu, P., 10.1016/j.physleta.2013.06.009, Phys. Lett., A 377 (2013), 2027-2033. (2013) Zbl1297.90017MR3083138DOI10.1016/j.physleta.2013.06.009
- Gupta, A. K., Sharma, S., 10.1088/1674-1056/19/11/110503, Chin. Phys. B 19 (2010), Article ID 110503, 9 pages. (2010) DOI10.1088/1674-1056/19/11/110503
- Gupta, A. K., Sharma, S., 10.1088/1674-1056/21/1/015201, Chin. Phys. B 21 (2012), Article ID 015201, 15 pages. (2012) DOI10.1088/1674-1056/21/1/015201
- Igarashi, Y., Itoh, K., Nakanishi, K., Ogura, K., Yokokawa, K., 10.1103/PhysRevLett.83.718, Phys. Rev. Lett. 83 (1999), 718-721. (1999) DOI10.1103/PhysRevLett.83.718
- Igarashi, Y., Itoh, K., Nakanishi, K., Ogura, K., Yokokawa, K., 10.1103/PhysRevE.64.047102, Phys. Rev. E (3) 64 (2001), Article ID 047102. (2001) DOI10.1103/PhysRevE.64.047102
- Jiang, R., Wu, Q., Zhu, Z., 10.1103/PhysRevE.64.017101, Phys. Rev. E (3) 64 (2001), Article ID 017101. (2001) MR2998582DOI10.1103/PhysRevE.64.017101
- Jiang, R., Wu, Q.-S., Zhu, Z.-J., 10.1016/S0191-2615(01)00010-8, Transp. Res., Part B 36 (2002), 405-419. (2002) DOI10.1016/S0191-2615(01)00010-8
- Kerner, B. S., Konhäuser, P., 10.1103/PhysRevE.48.R2335, Phys. Rev. E (3) 48 (1993), 2335-2338. (1993) DOI10.1103/PhysRevE.48.R2335
- Kuznetsov, Y. A., 10.1007/978-0-387-22710-8_5, Elements of Applied Bifurcation Theory Applied Mathematical Sciences 112. Springer, New York (1998), 151-194. (1998) Zbl0914.58025MR1711790DOI10.1007/978-0-387-22710-8_5
- Lei, L., Wang, Z., Wu, Y., 10.32604/cmes.2022.019855, CMES, Comput. Model. Eng. Sci. 131 (2022), 1815-1830. (2022) DOI10.32604/cmes.2022.019855
- Ling, D., Jian, X. P., Stability and bifurcation characteristics of a class of nonlinear vehicle following model, J. Traffic and Transportation Engineering and Information 7 (2009), 6-11. (2009)
- Ma, G., Ma, M., Liang, S., Wang, Y., Guo, H., 10.1016/j.physa.2020.125303, Physica A 562 (2021), Article ID 125303, 12 pages. (2021) Zbl07542618MR4157710DOI10.1016/j.physa.2020.125303
- Ma, G., Ma, M., Liang, S., Wang, Y., Zhang, Y., 10.1016/j.cnsns.2020.105221, Commun. Nonlinear Sci. Numer. Simul. 85 (2020), Article ID 105221, 10 pages. (2020) Zbl1452.65169MR4065383DOI10.1016/j.cnsns.2020.105221
- Meng, X. P., Yan, L. Y., 10.1002/asjc.1505, Asian J. Control 19 (2017), 1844-1853. (2017) Zbl1386.93217MR3704494DOI10.1002/asjc.1505
- Orosz, G., Wilson, R. E., Krauskopf, B., 10.1103/PhysRevE.70.026207, Phys. Rev. E (3) 70 (2004), Article ID 026207, 10 pages. (2004) MR2129214DOI10.1103/PhysRevE.70.026207
- Redhu, P., Gupta, A. K., 10.1016/j.cnsns.2015.03.015, Commun. Nonlinear Sci. Numer. Simul. 27 (2015), 263-270. (2015) Zbl1457.93068MR3341560DOI10.1016/j.cnsns.2015.03.015
- Zeng, J., Qian, Y., Xu, D., Jia, Z., Huang, Z., 10.1155/2014/218465, Math. Probl. Eng. 2014 (2014), Article ID 218465, 6 pages. (2014) Zbl1407.90103MR3166824DOI10.1155/2014/218465
- Zhai, C., Wu, W., 10.1007/s11071-018-4318-7, Nonlinear Dyn. 93 (2018), 2185-2199. (2018) DOI10.1007/s11071-018-4318-7
- Zhai, C., Wu, W., 10.1142/S0129183119500736, Int. J. Mod. Phys. C 30 (2019), Article ID 1950073, 14 pages. (2019) MR4015821DOI10.1142/S0129183119500736
- Zhai, C., Wu, W., 10.1142/S0217984919502737, Mod. Phys. Lett. B 33 (2019), Article ID 1950273, 16 pages. (2019) MR3993691DOI10.1142/S0217984919502737
- Zhai, C., Wu, W., 10.1142/S0129183120500898, Int. J. Mod. Phys. C 31 (2020), Article ID 2050089, 16 pages. (2020) MR4119105DOI10.1142/S0129183120500898
- Zhai, C., Wu, W., 10.1142/S0217984920500712, Mod. Phys. Lett. B 34 (2020), Article ID 2050071, 15 pages. (2020) MR4068029DOI10.1142/S0217984920500712
- Zhai, C., Wu, W., 10.1142/S0217984921500548, Mod. Phys. Lett. B 35 (2021), Article ID 2150054, 15 pages. (2021) MR4202802DOI10.1142/S0217984921500548
- Zhai, C., Wu, W., 10.1016/j.cnsns.2020.105667, Commun. Nonlinear Sci. Numer. Simul. 95 (2021), Article ID 105667, 18 pages. (2021) Zbl1456.82635MR4192012DOI10.1016/j.cnsns.2020.105667
- Zhang, P., Xue, Y., Zhang, Y.-C., Wang, X., Cen, B.-L., 10.1142/S0217984920502176, Mod. Phys. Lett. B 34 (2020), Article ID 2050217, 18 pages. (2020) MR4128734DOI10.1142/S0217984920502176
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.