Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping
Applications of Mathematics (2023)
- Volume: 68, Issue: 2, page 191-207
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLi, Kwang-Ok, and Kim, Yong-Ho. "Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping." Applications of Mathematics 68.2 (2023): 191-207. <http://eudml.org/doc/299531>.
@article{Li2023,
abstract = {This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids.},
author = {Li, Kwang-Ok, Kim, Yong-Ho},
journal = {Applications of Mathematics},
keywords = {inhomogeneous incompressible fluid; Navier-Stokes equations; damping; global regularity},
language = {eng},
number = {2},
pages = {191-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping},
url = {http://eudml.org/doc/299531},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Li, Kwang-Ok
AU - Kim, Yong-Ho
TI - Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 191
EP - 207
AB - This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids.
LA - eng
KW - inhomogeneous incompressible fluid; Navier-Stokes equations; damping; global regularity
UR - http://eudml.org/doc/299531
ER -
References
top- Abidi, H., Gui, G., Zhang, P., 10.1007/s00205-011-0473-4, Arch. Ration. Mech. Anal. 204 (2012), 189-230. (2012) Zbl1314.76021MR2898739DOI10.1007/s00205-011-0473-4
- Abidi, H., Gui, G., Zhang, P., 10.1016/j.matpur.2012.10.015, J. Math. Pures Appl. (9) 100 (2013), 166-203. (2013) Zbl1284.35302MR3073212DOI10.1016/j.matpur.2012.10.015
- Antontsev, S. N., Kazhikhov, A. V., Monakhov, V. N., 10.1016/s0168-2024(08)x7006-7, Studies in Mathematics and Its Applications 22. North-Holland, Amsterdam (1990). (1990) Zbl0696.76001MR1035212DOI10.1016/s0168-2024(08)x7006-7
- Cai, X., Jiu, Q., 10.1016/j.jmaa.2008.01.041, J. Math. Anal. Appl. 343 (2008), 799-809. (2008) Zbl1143.35349MR2401535DOI10.1016/j.jmaa.2008.01.041
- Danchin, R., 10.1017/S030821050000295X, Proc. R. Soc. Edinb., Sect. A, Math. 133 (2003), 1311-1334. (2003) Zbl1050.76013MR2027648DOI10.1017/S030821050000295X
- Danchin, R., 10.1007/s00021-004-0147-1, J. Math. Fluid Mech. 8 (2006), 333-381. (2006) Zbl1142.76354MR2258416DOI10.1007/s00021-004-0147-1
- Danchin, R., Mucha, P. B., 10.1016/j.jfa.2008.11.019, J. Funct. Anal. 256 (2009), 881-927. (2009) Zbl1160.35004MR2484939DOI10.1016/j.jfa.2008.11.019
- Danchin, R., Zhang, P., 10.1016/j.jfa.2014.07.017, J. Funct. Anal. 267 (2014), 2371-2436. (2014) Zbl1297.35167MR3250369DOI10.1016/j.jfa.2014.07.017
- Heywood, J. G., 10.1512/iumj.1980.29.29048, Indiana Univ. Math. J. 29 (1980), 639-681. (1980) Zbl0494.35077MR0589434DOI10.1512/iumj.1980.29.29048
- Huang, J., Paicu, M., Zhang, P., 10.1007/s00205-013-0624-x, Arch. Ration. Mech. Anal. 209 (2013), 631-682. (2013) Zbl1287.35055MR3056619DOI10.1007/s00205-013-0624-x
- Kim, Y., Li, K., Time-periodic strong solutions of the 3D Navier-Stokes equations with damping, Electron. J. Differ. Equ. 2017 (2017), Article ID 244, 11 pages. (2017) Zbl1375.35321MR3711197
- Kim, Y.-H., Li, K.-O., Kim, C.-U., 10.1007/s11565-020-00351-5, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67 (2021), 149-173. (2021) Zbl1475.35237MR4254007DOI10.1007/s11565-020-00351-5
- Ladyzhenskaya, O. A., Solonnikov, V. A., 10.1007/BF01085325, J. Sov. Math. 9 (1978), 697-749. (1978) Zbl0401.76037MR0425391DOI10.1007/BF01085325
- Lions, P.-L., Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Models, Oxford Lecture Series in Mathematics and Its Applications 3. Oxford University Press, New York (1996). (1996) Zbl0866.76002MR1422251
- Pardo, D., Valero, J., Giménez, Á., 10.3934/dcdsb.2018279, Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 3569-3590. (2019) Zbl1423.35038MR3986246DOI10.3934/dcdsb.2018279
- Ri, M.-H., Zhang, P., 10.1007/s00021-019-0461-2, J. Math. Fluid Mech. 21 (2019), Article ID 57, 30 pages. (2019) Zbl1427.35186MR4016909DOI10.1007/s00021-019-0461-2
- Simon, J., 10.1137/0521061, SIAM J. Math. Anal. 21 (1990), 1093-1117. (1990) Zbl0702.76039MR1062395DOI10.1137/0521061
- Zhai, X., Yin, Z., 10.1016/j.jde.2017.10.030, J. Diff. Equations 264 (2018), 2407-2447. (2018) Zbl1383.35178MR3721433DOI10.1016/j.jde.2017.10.030
- Zhang, Z., Wu, X., Lu, M., 10.1016/j.jmaa.2010.11.019, J. Math. Anal. Appl. 377 (2011), 414-419. (2011) Zbl1210.35181MR2754840DOI10.1016/j.jmaa.2010.11.019
- Zhang, P., Zhao, C., Zhang, J., 10.1016/j.na.2014.07.014, Nonlinear Anal., Theory Methods Appl., Ser. A 110 (2014), 61-76. (2014) Zbl1301.35096MR3259733DOI10.1016/j.na.2014.07.014
- Zhou, Y., 10.1016/j.aml.2012.02.029, Appl. Math. Lett. 25 (2012), 1822-1825. (2012) Zbl1426.76095MR2957760DOI10.1016/j.aml.2012.02.029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.