Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping

Kwang-Ok Li; Yong-Ho Kim

Applications of Mathematics (2023)

  • Volume: 68, Issue: 2, page 191-207
  • ISSN: 0862-7940

Abstract

top
This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids.

How to cite

top

Li, Kwang-Ok, and Kim, Yong-Ho. "Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping." Applications of Mathematics 68.2 (2023): 191-207. <http://eudml.org/doc/299531>.

@article{Li2023,
abstract = {This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids.},
author = {Li, Kwang-Ok, Kim, Yong-Ho},
journal = {Applications of Mathematics},
keywords = {inhomogeneous incompressible fluid; Navier-Stokes equations; damping; global regularity},
language = {eng},
number = {2},
pages = {191-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping},
url = {http://eudml.org/doc/299531},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Li, Kwang-Ok
AU - Kim, Yong-Ho
TI - Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 191
EP - 207
AB - This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids.
LA - eng
KW - inhomogeneous incompressible fluid; Navier-Stokes equations; damping; global regularity
UR - http://eudml.org/doc/299531
ER -

References

top
  1. Abidi, H., Gui, G., Zhang, P., 10.1007/s00205-011-0473-4, Arch. Ration. Mech. Anal. 204 (2012), 189-230. (2012) Zbl1314.76021MR2898739DOI10.1007/s00205-011-0473-4
  2. Abidi, H., Gui, G., Zhang, P., 10.1016/j.matpur.2012.10.015, J. Math. Pures Appl. (9) 100 (2013), 166-203. (2013) Zbl1284.35302MR3073212DOI10.1016/j.matpur.2012.10.015
  3. Antontsev, S. N., Kazhikhov, A. V., Monakhov, V. N., 10.1016/s0168-2024(08)x7006-7, Studies in Mathematics and Its Applications 22. North-Holland, Amsterdam (1990). (1990) Zbl0696.76001MR1035212DOI10.1016/s0168-2024(08)x7006-7
  4. Cai, X., Jiu, Q., 10.1016/j.jmaa.2008.01.041, J. Math. Anal. Appl. 343 (2008), 799-809. (2008) Zbl1143.35349MR2401535DOI10.1016/j.jmaa.2008.01.041
  5. Danchin, R., 10.1017/S030821050000295X, Proc. R. Soc. Edinb., Sect. A, Math. 133 (2003), 1311-1334. (2003) Zbl1050.76013MR2027648DOI10.1017/S030821050000295X
  6. Danchin, R., 10.1007/s00021-004-0147-1, J. Math. Fluid Mech. 8 (2006), 333-381. (2006) Zbl1142.76354MR2258416DOI10.1007/s00021-004-0147-1
  7. Danchin, R., Mucha, P. B., 10.1016/j.jfa.2008.11.019, J. Funct. Anal. 256 (2009), 881-927. (2009) Zbl1160.35004MR2484939DOI10.1016/j.jfa.2008.11.019
  8. Danchin, R., Zhang, P., 10.1016/j.jfa.2014.07.017, J. Funct. Anal. 267 (2014), 2371-2436. (2014) Zbl1297.35167MR3250369DOI10.1016/j.jfa.2014.07.017
  9. Heywood, J. G., 10.1512/iumj.1980.29.29048, Indiana Univ. Math. J. 29 (1980), 639-681. (1980) Zbl0494.35077MR0589434DOI10.1512/iumj.1980.29.29048
  10. Huang, J., Paicu, M., Zhang, P., 10.1007/s00205-013-0624-x, Arch. Ration. Mech. Anal. 209 (2013), 631-682. (2013) Zbl1287.35055MR3056619DOI10.1007/s00205-013-0624-x
  11. Kim, Y., Li, K., Time-periodic strong solutions of the 3D Navier-Stokes equations with damping, Electron. J. Differ. Equ. 2017 (2017), Article ID 244, 11 pages. (2017) Zbl1375.35321MR3711197
  12. Kim, Y.-H., Li, K.-O., Kim, C.-U., 10.1007/s11565-020-00351-5, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67 (2021), 149-173. (2021) Zbl1475.35237MR4254007DOI10.1007/s11565-020-00351-5
  13. Ladyzhenskaya, O. A., Solonnikov, V. A., 10.1007/BF01085325, J. Sov. Math. 9 (1978), 697-749. (1978) Zbl0401.76037MR0425391DOI10.1007/BF01085325
  14. Lions, P.-L., Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Models, Oxford Lecture Series in Mathematics and Its Applications 3. Oxford University Press, New York (1996). (1996) Zbl0866.76002MR1422251
  15. Pardo, D., Valero, J., Giménez, Á., 10.3934/dcdsb.2018279, Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 3569-3590. (2019) Zbl1423.35038MR3986246DOI10.3934/dcdsb.2018279
  16. Ri, M.-H., Zhang, P., 10.1007/s00021-019-0461-2, J. Math. Fluid Mech. 21 (2019), Article ID 57, 30 pages. (2019) Zbl1427.35186MR4016909DOI10.1007/s00021-019-0461-2
  17. Simon, J., 10.1137/0521061, SIAM J. Math. Anal. 21 (1990), 1093-1117. (1990) Zbl0702.76039MR1062395DOI10.1137/0521061
  18. Zhai, X., Yin, Z., 10.1016/j.jde.2017.10.030, J. Diff. Equations 264 (2018), 2407-2447. (2018) Zbl1383.35178MR3721433DOI10.1016/j.jde.2017.10.030
  19. Zhang, Z., Wu, X., Lu, M., 10.1016/j.jmaa.2010.11.019, J. Math. Anal. Appl. 377 (2011), 414-419. (2011) Zbl1210.35181MR2754840DOI10.1016/j.jmaa.2010.11.019
  20. Zhang, P., Zhao, C., Zhang, J., 10.1016/j.na.2014.07.014, Nonlinear Anal., Theory Methods Appl., Ser. A 110 (2014), 61-76. (2014) Zbl1301.35096MR3259733DOI10.1016/j.na.2014.07.014
  21. Zhou, Y., 10.1016/j.aml.2012.02.029, Appl. Math. Lett. 25 (2012), 1822-1825. (2012) Zbl1426.76095MR2957760DOI10.1016/j.aml.2012.02.029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.