A note on functional tightness and minitightness of space of the -permutation degree
Dimitrios N. Georgiou; Nodirbek K. Mamadaliev; Rustam M. Zhuraev
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 1, page 97-108
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGeorgiou, Dimitrios N., Mamadaliev, Nodirbek K., and Zhuraev, Rustam M.. "A note on functional tightness and minitightness of space of the $G$-permutation degree." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 97-108. <http://eudml.org/doc/299532>.
@article{Georgiou2023,
abstract = {We study the behavior of the minimal tightness and functional tightness of topological spaces under the influence of the functor of the permutation degree. Analytically: a) We introduce the notion of $\tau $-open sets and investigate some basic properties of them. b) We prove that if the map $f\colon X\rightarrow Y$ is $\tau $-continuous, then the map $SP^\{n\}f\colon SP^n X \rightarrow SP^n Y$ is also $\tau $-continuous. c) We show that the functor $SP^n$ preserves the functional tightness and the minimal tightness of compacts. d) Finally, we give some facts and properties on $\tau $-bounded spaces. More precisely, we prove that the functor of permutation degree $SP^n$ preserves the property of being $\tau $-bounded.},
author = {Georgiou, Dimitrios N., Mamadaliev, Nodirbek K., Zhuraev, Rustam M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\tau $-open set; $\tau $-bounded space; functional tightness; minimal tightness},
language = {eng},
number = {1},
pages = {97-108},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on functional tightness and minitightness of space of the $G$-permutation degree},
url = {http://eudml.org/doc/299532},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Georgiou, Dimitrios N.
AU - Mamadaliev, Nodirbek K.
AU - Zhuraev, Rustam M.
TI - A note on functional tightness and minitightness of space of the $G$-permutation degree
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 97
EP - 108
AB - We study the behavior of the minimal tightness and functional tightness of topological spaces under the influence of the functor of the permutation degree. Analytically: a) We introduce the notion of $\tau $-open sets and investigate some basic properties of them. b) We prove that if the map $f\colon X\rightarrow Y$ is $\tau $-continuous, then the map $SP^{n}f\colon SP^n X \rightarrow SP^n Y$ is also $\tau $-continuous. c) We show that the functor $SP^n$ preserves the functional tightness and the minimal tightness of compacts. d) Finally, we give some facts and properties on $\tau $-bounded spaces. More precisely, we prove that the functor of permutation degree $SP^n$ preserves the property of being $\tau $-bounded.
LA - eng
KW - $\tau $-open set; $\tau $-bounded space; functional tightness; minimal tightness
UR - http://eudml.org/doc/299532
ER -
References
top- Arhangel'skiĭ A. V., Functional tightness, -spaces and -embeddings, Comment. Math. Univ. Carolin. 24 (1983), no. 1, 105–120. MR0703930
- Beshimov R. B., Some properties of the functor , Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 313 (2004), Issled. po Topol. 11, 131–134, 139 (Russian); translation in J. Math. Sci. (N.Y.) 133 (2006), no. 5, 1599–1601. MR2091586
- Beshimov R. B., Nonincrease of density and weak density under weakly normal functors, Mat. Zametki 84 (2008), no. 4, 527–531 (Russian); translation in Math. Notes 84 (2008), no. 3–4, 493–497. MR2485193
- Beshimov R. B., Georgiou D. N., Mamadaliev N. K., 10.2298/FIL2201187B, Filomat 36 (2022), no. 1, 187–193. MR4394261DOI10.2298/FIL2201187B
- Beshimov R. B., Georgiou D. N., Zhuraev R. M., 10.4995/agt.2021.15566, Appl. Gen. Topol. 22 (2021), no. 2, 447–459. MR4359780DOI10.4995/agt.2021.15566
- Beshimov R. B., Mamadaliev N. K., 10.1016/j.topol.2017.02.037, Topology Appl. 221 (2017), 167–177. MR3624454DOI10.1016/j.topol.2017.02.037
- Beshimov R. B., Mamadaliev N. K., 10.1016/j.topol.2019.106998, Topology Appl. 275 (2020), 106998, 11 pages. MR4081635DOI10.1016/j.topol.2019.106998
- Beshimov R. B., Mamadaliev N. K., Èshtemirova S. K., Categorical and cardinal properties of hyperspaces with a finite number of components, Itogi Nauki Tekh. Ser. Sovrem. Mat. Priloyh. Temat. Obz. 144 (2018), 96–103 (Russian); translation in J. Math. Sci. 245 (2020), no. 3, 390–397. MR3829876
- Fedorčuk V. V., Covariant functors in a category of compacta, absolute retracts and -manifolds, Uspekhi Mat. Nauk 36 (1981), no. 3(219), 177–195, 256 (Russian). MR0622724
- Fedorchuk V. V., Filippov V. V., Topology of hyperspaces and its applications, Current Life, Science and Technology: Series “Mathematics and Cybernetics" 89 (1989), no. 4, 48 pages (Russian). MR1000972
- Fedorchuk V. V., Filippov V. V., General Topology, The Basic Foundation, Fizmatlit, Moscow, 2006.
- Maya D., Pellicer-Covarrubias P., Pichardo-Mendoza R., 10.1515/ms-2017-0114, Math. Slovaca 68 (2018), no. 2, 431–450. MR3783397DOI10.1515/ms-2017-0114
- Michael E., 10.1090/S0002-9947-1951-0042109-4, Trans. Amer. Math. Soc. 71 (1951), 152–172. Zbl0043.37902MR0042109DOI10.1090/S0002-9947-1951-0042109-4
- Okunev O., 10.1016/j.topol.2016.05.003, Topology Appl. 208 (2016), 10–16. MR3506966DOI10.1016/j.topol.2016.05.003
- Okunev O., Ramírez Páramo R., 10.1016/j.topol.2017.06.009, Topology Appl. 228 (2017), 236–242. MR3679085DOI10.1016/j.topol.2017.06.009
- Radul T., On the functor of order-preserving functionals, Comment. Math. Univ. Carol. 39 (1998), no. 3, 609–615. Zbl0962.54009MR1666806
- Reznichenko E. A., Functional and weak functional tightness, Topological Structures and Their Maps, Latv. Gos. Univ., Riga, 1987, pages 105–107. MR0934036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.