A note on functional tightness and minitightness of space of the G -permutation degree

Dimitrios N. Georgiou; Nodirbek K. Mamadaliev; Rustam M. Zhuraev

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 1, page 97-108
  • ISSN: 0010-2628

Abstract

top
We study the behavior of the minimal tightness and functional tightness of topological spaces under the influence of the functor of the permutation degree. Analytically: a) We introduce the notion of τ -open sets and investigate some basic properties of them. b) We prove that if the map f : X Y is τ -continuous, then the map S P n f : S P n X S P n Y is also τ -continuous. c) We show that the functor S P n preserves the functional tightness and the minimal tightness of compacts. d) Finally, we give some facts and properties on τ -bounded spaces. More precisely, we prove that the functor of permutation degree S P n preserves the property of being τ -bounded.

How to cite

top

Georgiou, Dimitrios N., Mamadaliev, Nodirbek K., and Zhuraev, Rustam M.. "A note on functional tightness and minitightness of space of the $G$-permutation degree." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 97-108. <http://eudml.org/doc/299532>.

@article{Georgiou2023,
abstract = {We study the behavior of the minimal tightness and functional tightness of topological spaces under the influence of the functor of the permutation degree. Analytically: a) We introduce the notion of $\tau $-open sets and investigate some basic properties of them. b) We prove that if the map $f\colon X\rightarrow Y$ is $\tau $-continuous, then the map $SP^\{n\}f\colon SP^n X \rightarrow SP^n Y$ is also $\tau $-continuous. c) We show that the functor $SP^n$ preserves the functional tightness and the minimal tightness of compacts. d) Finally, we give some facts and properties on $\tau $-bounded spaces. More precisely, we prove that the functor of permutation degree $SP^n$ preserves the property of being $\tau $-bounded.},
author = {Georgiou, Dimitrios N., Mamadaliev, Nodirbek K., Zhuraev, Rustam M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\tau $-open set; $\tau $-bounded space; functional tightness; minimal tightness},
language = {eng},
number = {1},
pages = {97-108},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on functional tightness and minitightness of space of the $G$-permutation degree},
url = {http://eudml.org/doc/299532},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Georgiou, Dimitrios N.
AU - Mamadaliev, Nodirbek K.
AU - Zhuraev, Rustam M.
TI - A note on functional tightness and minitightness of space of the $G$-permutation degree
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 97
EP - 108
AB - We study the behavior of the minimal tightness and functional tightness of topological spaces under the influence of the functor of the permutation degree. Analytically: a) We introduce the notion of $\tau $-open sets and investigate some basic properties of them. b) We prove that if the map $f\colon X\rightarrow Y$ is $\tau $-continuous, then the map $SP^{n}f\colon SP^n X \rightarrow SP^n Y$ is also $\tau $-continuous. c) We show that the functor $SP^n$ preserves the functional tightness and the minimal tightness of compacts. d) Finally, we give some facts and properties on $\tau $-bounded spaces. More precisely, we prove that the functor of permutation degree $SP^n$ preserves the property of being $\tau $-bounded.
LA - eng
KW - $\tau $-open set; $\tau $-bounded space; functional tightness; minimal tightness
UR - http://eudml.org/doc/299532
ER -

References

top
  1. Arhangel'skiĭ A. V., Functional tightness, Q -spaces and τ -embeddings, Comment. Math. Univ. Carolin. 24 (1983), no. 1, 105–120. MR0703930
  2. Beshimov R. B., Some properties of the functor O β , Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 313 (2004), Issled. po Topol. 11, 131–134, 139 (Russian); translation in J. Math. Sci. (N.Y.) 133 (2006), no. 5, 1599–1601. MR2091586
  3. Beshimov R. B., Nonincrease of density and weak density under weakly normal functors, Mat. Zametki 84 (2008), no. 4, 527–531 (Russian); translation in Math. Notes 84 (2008), no. 3–4, 493–497. MR2485193
  4. Beshimov R. B., Georgiou D. N., Mamadaliev N. K., 10.2298/FIL2201187B, Filomat 36 (2022), no. 1, 187–193. MR4394261DOI10.2298/FIL2201187B
  5. Beshimov R. B., Georgiou D. N., Zhuraev R. M., 10.4995/agt.2021.15566, Appl. Gen. Topol. 22 (2021), no. 2, 447–459. MR4359780DOI10.4995/agt.2021.15566
  6. Beshimov R. B., Mamadaliev N. K., 10.1016/j.topol.2017.02.037, Topology Appl. 221 (2017), 167–177. MR3624454DOI10.1016/j.topol.2017.02.037
  7. Beshimov R. B., Mamadaliev N. K., 10.1016/j.topol.2019.106998, Topology Appl. 275 (2020), 106998, 11 pages. MR4081635DOI10.1016/j.topol.2019.106998
  8. Beshimov R. B., Mamadaliev N. K., Èshtemirova S. K., Categorical and cardinal properties of hyperspaces with a finite number of components, Itogi Nauki Tekh. Ser. Sovrem. Mat. Priloyh. Temat. Obz. 144 (2018), 96–103 (Russian); translation in J. Math. Sci. 245 (2020), no. 3, 390–397. MR3829876
  9. Fedorčuk V. V., Covariant functors in a category of compacta, absolute retracts and Q -manifolds, Uspekhi Mat. Nauk 36 (1981), no. 3(219), 177–195, 256 (Russian). MR0622724
  10. Fedorchuk V. V., Filippov V. V., Topology of hyperspaces and its applications, Current Life, Science and Technology: Series “Mathematics and Cybernetics" 89 (1989), no. 4, 48 pages (Russian). MR1000972
  11. Fedorchuk V. V., Filippov V. V., General Topology, The Basic Foundation, Fizmatlit, Moscow, 2006. 
  12. Maya D., Pellicer-Covarrubias P., Pichardo-Mendoza R., 10.1515/ms-2017-0114, Math. Slovaca 68 (2018), no. 2, 431–450. MR3783397DOI10.1515/ms-2017-0114
  13. Michael E., 10.1090/S0002-9947-1951-0042109-4, Trans. Amer. Math. Soc. 71 (1951), 152–172. Zbl0043.37902MR0042109DOI10.1090/S0002-9947-1951-0042109-4
  14. Okunev O., 10.1016/j.topol.2016.05.003, Topology Appl. 208 (2016), 10–16. MR3506966DOI10.1016/j.topol.2016.05.003
  15. Okunev O., Ramírez Páramo R., 10.1016/j.topol.2017.06.009, Topology Appl. 228 (2017), 236–242. MR3679085DOI10.1016/j.topol.2017.06.009
  16. Radul T., On the functor of order-preserving functionals, Comment. Math. Univ. Carol. 39 (1998), no. 3, 609–615. Zbl0962.54009MR1666806
  17. Reznichenko E. A., Functional and weak functional tightness, Topological Structures and Their Maps, Latv. Gos. Univ., Riga, 1987, pages 105–107. MR0934036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.