On stochastic properties of past varentropy with applications

Akash Sharma; Chanchal Kundu

Applications of Mathematics (2024)

  • Volume: 69, Issue: 3, page 373-394
  • ISSN: 0862-7940

Abstract

top
To have accuracy in the extracted information is the goal of the reliability theory investigation. In information theory, varentropy has recently been proposed to describe and measure the degree of information dispersion around entropy. Theoretical investigation on varentropy of past life has been initiated, however details on its stochastic properties are yet to be discovered. In this paper, we propose a novel stochastic order and introduce new classes of life distributions based on past varentropy. Further, we illustrate some of its applications in reliability modeling and in the diversity measure of Boltzmann distribution.

How to cite

top

Sharma, Akash, and Kundu, Chanchal. "On stochastic properties of past varentropy with applications." Applications of Mathematics 69.3 (2024): 373-394. <http://eudml.org/doc/299533>.

@article{Sharma2024,
abstract = {To have accuracy in the extracted information is the goal of the reliability theory investigation. In information theory, varentropy has recently been proposed to describe and measure the degree of information dispersion around entropy. Theoretical investigation on varentropy of past life has been initiated, however details on its stochastic properties are yet to be discovered. In this paper, we propose a novel stochastic order and introduce new classes of life distributions based on past varentropy. Further, we illustrate some of its applications in reliability modeling and in the diversity measure of Boltzmann distribution.},
author = {Sharma, Akash, Kundu, Chanchal},
journal = {Applications of Mathematics},
keywords = {ageing classes; past varentropy order; stochastic orders; varentropy},
language = {eng},
number = {3},
pages = {373-394},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On stochastic properties of past varentropy with applications},
url = {http://eudml.org/doc/299533},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Sharma, Akash
AU - Kundu, Chanchal
TI - On stochastic properties of past varentropy with applications
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 373
EP - 394
AB - To have accuracy in the extracted information is the goal of the reliability theory investigation. In information theory, varentropy has recently been proposed to describe and measure the degree of information dispersion around entropy. Theoretical investigation on varentropy of past life has been initiated, however details on its stochastic properties are yet to be discovered. In this paper, we propose a novel stochastic order and introduce new classes of life distributions based on past varentropy. Further, we illustrate some of its applications in reliability modeling and in the diversity measure of Boltzmann distribution.
LA - eng
KW - ageing classes; past varentropy order; stochastic orders; varentropy
UR - http://eudml.org/doc/299533
ER -

References

top
  1. kan, E. Arı, 10.1109/TIT.2016.2555841, IEEE Trans. Inf. Theory 62 (2016), 3390-3400. (2016) Zbl1359.94292MR3506740DOI10.1109/TIT.2016.2555841
  2. Barlow, R. E., Proschan, F., Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, New York (1975). (1975) Zbl0379.62080MR0438625
  3. Bobkov, S., Madiman, M., 10.1214/10-AOP592, Ann. Probab. 39 (2011), 1528-1543. (2011) Zbl1227.60043MR2857249DOI10.1214/10-AOP592
  4. Buono, F., Longobardi, M., Pellerey, F., 10.3103/S106653072202003X, Math. Methods Stat. 31 (2022), 57-73. (2022) Zbl07595983MR4491117DOI10.3103/S106653072202003X
  5. Burnham, K. P., Anderson, D. R., 10.1007/b97636, Springer, New York (2002). (2002) Zbl1005.62007MR1919620DOI10.1007/b97636
  6. Cover, T. M., Thomas, J. A., 10.1002/0471200611, Wiley Series in Telecommunications. John Wiley & Sons, New York (1991). (1991) Zbl0762.94001MR1122806DOI10.1002/0471200611
  7. Crescenzo, A. Di, Longobardi, M., 10.1239/jap/1025131441, J. Appl. Probab. 39 (2002), 434-440. (2002) Zbl1003.62087MR1908960DOI10.1239/jap/1025131441
  8. Crescenzo, A. Di, Paolillo, L., 10.1017/S0269964820000133, Probab. Eng. Inf. Sci. 35 (2021), 680-698. (2021) Zbl07620594MR4276539DOI10.1017/S0269964820000133
  9. Crescenzo, A. Di, Paolillo, L., Suárez-Llorens, A., 10.48550/arXiv.2103.11038, Available at https://arxiv.org/abs/2103.11038 (2021), 21 pages. (2021) DOI10.48550/arXiv.2103.11038
  10. Ebrahimi, N., Kirmani, S. N. U. A., 10.1016/0167-7152(95)00170-0, Stat. Probab. Lett. 29 (1996), 167-176. (1996) Zbl1007.62527MR1411415DOI10.1016/0167-7152(95)00170-0
  11. Fradelizi, M., Madiman, M., Wang, L., 10.1007/978-3-319-40519-3_3, High Dimensional Probability VII Progress in Probability 71. Birkhäuser, Basel (2016), 45-60. (2016) Zbl1358.60036MR3565259DOI10.1007/978-3-319-40519-3_3
  12. Kundu, C., Singh, S., 10.1080/03610926.2019.1568480, Commun. Stat., Theory Methods 49 (2020), 1989-2007. (2020) Zbl1511.62012MR4070896DOI10.1080/03610926.2019.1568480
  13. Liu, J., Information Theoretic Content and Probability: Ph.D. Thesis, University of Florida, Gainesville (2007). (2007) MR2710407
  14. Maadani, S., Borzadaran, G. R. Mohtashami, Roknabadi, A. H. Rezaei, 10.1080/03610926.2020.1861299, Commun. Stat., Theory Methods 51 (2022), 6447-6460. (2022) Zbl07571136MR4464492DOI10.1080/03610926.2020.1861299
  15. Nanda, A. K., Paul, P., 10.1007/s00184-006-0030-6, Metrika 64 (2006), 47-61. (2006) Zbl1104.94007MR2242557DOI10.1007/s00184-006-0030-6
  16. Nanda, A. K., Paul, P., 10.1016/j.jspi.2005.01.006, J. Stat. Plann. Inference 136 (2006), 3659-3674. (2006) Zbl1098.94014MR2284670DOI10.1016/j.jspi.2005.01.006
  17. Rajaram, R., Castellani, B., Wilson, A. N., 10.1155/2017/8715605, Complexity 2017 (2017), Article ID 8715605, 10 pages. (2017) Zbl1407.94059DOI10.1155/2017/8715605
  18. Raqab, M. Z., Bayoud, H. A., Qiu, G., 10.1093/imamci/dnab033, IMA J. Math. Control Inf. 39 (2022), 132-154. (2022) Zbl1492.94041MR4388735DOI10.1093/imamci/dnab033
  19. Shaked, M., Shanthikumar, J. G., 10.1007/978-0-387-34675-5, Springer Series in Statistics. Springer, New York (2007). (2007) Zbl1111.62016MR2265633DOI10.1007/978-0-387-34675-5
  20. Shanker, R., Fesshaye, H., Selvaraj, S., 10.15406/bbij.2015.02.00042, Biometrics Biostat. Int. J. 2 (2015), 140-147. (2015) DOI10.15406/bbij.2015.02.00042
  21. Shannon, C. E., 10.1002/j.1538-7305.1948.tb01338.x, Bell Syst. Tech. J. 27 (1948), 379-423. (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
  22. Shannon, C. E., 10.1002/j.1538-7305.1948.tb00917.x, Bell Syst. Tech. J. 27 (1948), 623-656. (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb00917.x
  23. Sharma, A., Kundu, C., 10.1017/S0269964822000225, Probab. Eng. Inf. Sci. 37 (2023), 852-871. (2023) MR4604154DOI10.1017/S0269964822000225
  24. Song, K.-S., 10.1016/S0378-3758(00)00169-5, J. Stat. Plann. Inference 93 (2001), 51-69. (2001) Zbl0997.62003MR1822388DOI10.1016/S0378-3758(00)00169-5
  25. Zacks, S., 10.1007/978-1-4612-2854-7, Springer Texts in Statistics. Springer, New York (1992). (1992) Zbl0743.62096MR1138468DOI10.1007/978-1-4612-2854-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.